Microgravity Science and Technology

, Volume 30, Issue 4, pp 419–433 | Cite as

Flame Spread and Group-Combustion Excitation in Randomly Distributed Droplet Clouds with Low-Volatility Fuel near the Excitation Limit: a Percolation Approach Based on Flame-Spread Characteristics in Microgravity

  • Masato MikamiEmail author
  • Herman Saputro
  • Takehiko Seo
  • Hiroshi Oyagi
Original Article


Stable operation of liquid-fueled combustors requires the group combustion of fuel spray. Our study employs a percolation approach to describe unsteady group-combustion excitation based on findings obtained from microgravity experiments on the flame spread of fuel droplets. We focus on droplet clouds distributed randomly in three-dimensional square lattices with a low-volatility fuel, such as n-decane in room-temperature air, where the pre-vaporization effect is negligible. We also focus on the flame spread in dilute droplet clouds near the group-combustion-excitation limit, where the droplet interactive effect is assumed negligible. The results show that the occurrence probability of group combustion sharply decreases with the increase in mean droplet spacing around a specific value, which is termed the critical mean droplet spacing. If the lattice size is at smallest about ten times as large as the flame-spread limit distance, the flame-spread characteristics are similar to those over an infinitely large cluster. The number density of unburned droplets remaining after completion of burning attained maximum around the critical mean droplet spacing. Therefore, the critical mean droplet spacing is a good index for stable combustion and unburned hydrocarbon. In the critical condition, the flame spreads through complicated paths, and thus the characteristic time scale of flame spread over droplet clouds has a very large value. The overall flame-spread rate of randomly distributed droplet clouds is almost the same as the flame-spread rate of a linear droplet array except over the flame-spread limit.


Flame spread Group combustion Droplet cloud Percolation Microgravity 



This research was partly subsidized by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (24360350 and 15H04201). We would like to acknowledge the assistance by Mr. Hisashi Shigeno, Mr. Yuki Tsuchida and Mr. Daiki Azakami. This research was also conducted as a part of “Group Combustion” project by JAXA.


  1. Chiu, H. H., Liu, T. M.: Group combustion of liquid droplets. Combust. Sci. Technol. 17, 127–142 (1971)CrossRefGoogle Scholar
  2. Chiu, H. H., Kim, H. Y., Croke, E. J.: Internal group combustion of liquid droplets. Proc. Combust. Inst. 19, 971–980 (1983)CrossRefGoogle Scholar
  3. Correa, S. M., Sichel, M.: The group combustion of a spherical cloud of monodisperse fuel droplets. Proc. Combust. Inst. 19, 981–991 (1982)CrossRefGoogle Scholar
  4. Imaoka, R. T., Sirignano, W. A.: Vaporization and combustion in three-dimensional droplet arrays. Proc. Combust. Inst. 30, 1981–1990 (2005a)CrossRefGoogle Scholar
  5. Imaoka, R. T., Sirignano, W. A.: Transient vaporization and burning in dense droplet arrays. Int. J. Heat Mass Transfer 48, 4354–4366 (2005b)CrossRefzbMATHGoogle Scholar
  6. Kato, S., Kobayashi, H., Mizuno, H., Niioka, T.: Experiments on flame spread of a fuel droplet array in a high-pressure ambience. JSME Int. J. B 41, 322–330 (1998)CrossRefGoogle Scholar
  7. Kikuchi, M., Arai, T., Yoda, S., Tsukamoto, T., Umemura, A., Uchida, M., Niioka, T.: Numerical study on flame propagation of a fuel droplet array in high temperature environment under microgravity. Proc. Combust. Inst. 29, 2611–2619 (2002)CrossRefGoogle Scholar
  8. Kikuchi, M., Wakashima, Y., Yoda, S., Mikami, M.: Numerical study on flame spread of an n-decane droplet array in different temperature environment under microgravity. Proc. Combust. Inst. 30, 2001–2009 (2005)CrossRefGoogle Scholar
  9. Labowsky, M., Rosener, D. E.: Group combustion of droplets in fuel clouds. I. Quasi-steady predictions. Adv. Chem. 166, 63–79 (1978)CrossRefGoogle Scholar
  10. Mikami, M., Yamamoto, K., Kojima, N.: Combustion of partially premixed spray jets. Proc. Combust. Inst. 30, 2021–2028 (2005a)CrossRefGoogle Scholar
  11. Mikami, M., Oyagi, H., Kojima, N., Kikuchi, M., Wakashima, Y., Yoda, S.: Microgravity experiments on flame spread along fuel-droplet arrays using a new droplet-generation technique. Combust. Flame 141, 241–252 (2005b)CrossRefGoogle Scholar
  12. Mikami, M., Oyagi, H., Kojima, N., Wakashima, Y., Kikuchi, M., Yoda, S.: Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures. Combust. Flame 146, 391–406 (2006)CrossRefGoogle Scholar
  13. Mikami, M., Nakamoto, K., Kojima, N., Moriue, O.: Effects of overall equivalence ratio on flame structure of rich-premixed n-decane spray jet. J. Combust. Soc. Jpn. 50, 248–254 (2008). (in Japanese)Google Scholar
  14. Mikami, M., Mizuta, Y., Tsuchida, Y., Kojima, N.: Flame structure and stabilization of lean-premixed sprays in a counterflow with low-volatility fuel. Proc. Combust. Inst. 32, 2223–2230 (2009)CrossRefGoogle Scholar
  15. Nomura, H., Iwasaki, H., Suganuma, Y., Mikami, M., Kikuchi, M.: Microgravity experiments of flame spreading along a fuel droplet array in fuel vapor–air mixture. Proc. Combust. Inst. 33, 2013–2020 (2011)CrossRefGoogle Scholar
  16. Nunome, Y., Kato, Y., Maruta, K., Kobayashi, H., Niioka, T.: Flame propagation of n-decane spray in microgravity. Proc. Combust. Inst. 29, 2621–2626 (2003)CrossRefGoogle Scholar
  17. Okajima, S., Kimoto, T., Abe, K., Yamaguchi, S.: Experimental study on flame propagation of fuel droplet array under a zero gravity condition. JSME Trans. B 47, 2058–2065 (1981). (in Japanese)CrossRefGoogle Scholar
  18. Oyagi, H., Shigeno, H., Mikami, M., Kojima, N.: Flame-spread probability and local interactive effects in randomly arranged fuel-droplet arrays in microgravity. Combust. Flame 156, 763–770 (2009)CrossRefGoogle Scholar
  19. Ryan, W., Annamalai, K., Caton, J.: Relation between group combustion and drop array studies. Combust. Flame 80, 313–321 (1990)CrossRefGoogle Scholar
  20. Sano, N., Motomatsu, N., Saputro, H., Seo, T., Mikami, M.: Flame-spread characteristics of n-decane droplet arrays at different ambient pressures in microgravity. Int. J. Microgravity Sci. Appl. 330108, 33 (2016)Google Scholar
  21. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, Revised 2nd edn., CRC Press (1994)Google Scholar
  22. Umemura, A.: Interactive droplet vaporization and combustion: Approach from asymptotics. Prog. Energy Combust. Sci. 20, 325–372 (1994)CrossRefGoogle Scholar
  23. Umemura, A.: Flame propagation along a linear array of liquid fuel droplets under micro-gravity condition (1st report, Inter-droplet flame propagation mode map). JSME Trans. B 68, 2422–2428 (2002a). (in Japanese)CrossRefGoogle Scholar
  24. Umemura, A.: Flame propagation along a linear array of liquid fuel droplets under micro-gravity condition (2nd report, Flame propagation speed characteristics). JSME Trans. B 68, 2429–2436 (2002b). (in Japanese)CrossRefGoogle Scholar
  25. Umemura, A., Takamori, S.: Percolation theory for flame propagation in non- or less-volatile fuel spray: A conceptual analysis to group combustion excitation mechanism. Combust. Flame 141, 336–349 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018
corrected publication March/2018

Authors and Affiliations

  • Masato Mikami
    • 1
    Email author
  • Herman Saputro
    • 2
  • Takehiko Seo
    • 1
  • Hiroshi Oyagi
    • 1
  1. 1.Department of Mechanical EngineeringYamaguchi UniversityUbeJapan
  2. 2.Mechanical Engineering Education DepartmentSebelas Maret UniversityPabelanIndonesia

Personalised recommendations