Thermodiffusion in Ternary Mixtures of Water/Ethanol/Triethylene Glycol: First Report on the DCMIX3-Experiments Performed on the International Space Station

  • T. Triller
  • H. Bataller
  • M. M. Bou-Ali
  • M. Braibanti
  • F. Croccolo
  • J. M. Ezquerro
  • Q. Galand
  • Jna. Gavaldà
  • E. Lapeira
  • A. Laverón-Simavilla
  • T. Lyubimova
  • A. Mialdun
  • J. M. Ortiz de Zárate
  • J. Rodríguez
  • X. Ruiz
  • I. I. Ryzhkov
  • V. Shevtsova
  • S. Van Vaerenbergh
  • W. Köhler
Original Article
  • 28 Downloads

Abstract

We report on thermodiffusion experiments conducted on the International Space Station ISS during fall 2016. These experiments are part of the DCMIX (Diffusion and thermodiffusion Coefficients Measurements in ternary Mixtures) project, which aims at establishing a reliable data base of non-isothermal transport coefficients for selected ternary liquid mixtures. The third campaign, DCMIX3, focuses on aqueous systems with water/ethanol/triethylene glycol as an example, where sign changes of the Soret coefficient have already been reported for certain binary subsystems. Investigations have been carried out with the SODI (Selectable Optical Diagnostics Instrument) instrument, a Mach-Zehnder interferometer set up inside the Microgravity Science Glovebox in the Destiny Module of the ISS. Concentration changes within the liquids have been monitored in response to an external temperature gradient using phase-stepping interferometry. The complete data set has been made available in spring 2017. Due to additionally available measurement time, it was possible to collect a complete data set at 30C and an almost complete data set at 25C, which significantly exceeds the originally envisaged measurements at a single temperature only. All samples could be measured successfully. The SODI instrument and the DCMIX experiments have proven reliable and robust, allowing to extract meaningful data even in case of unforeseen laser instabilities. First assessments of the data quality have revealed six out of 31 runs with some problems in image contrast and/or phase step stability that will require more sophisticated algorithms. This publication documents all relevant parameters of the conducted experiments and also events that might have an influence on the final results. The compiled information is intended to serve as a starting point for all following data evaluations.

Keywords

Diffusion Thermodiffusion Soret effect Ternary mixtures Microgravity experiments 

Notes

Acknowledgements

We want to thank ESA and Roscosmos for providing the flight and operations opportunity and Ana Frutos Pastor and Ewald Kufner from ESA/ESTEC and Ingmar Lafaille and Johan Buytaert from QinetiQ Space for their support during the DCMIX3 campaign. This work has been developed in the framework of the cooperative project DCMIX (No. AO-2009-0858/1056) of the European Space Agency and the Russian Space Agency (Roscosmos)/TsNIIMash. WK and TT acknowledge support from the Deutsches Zentrum für Luft- und Raumfahrt (Grants 50WM1130, 50WM1544). QG, AM, VS and SVV acknowledge support from the PRODEX program of Belgian Federal Science Policy Office (BELSPO). MBA and JOZ acknowledges support from the Spanish ‘Agencia Estatal de Investigación’ (Grant FIS2014-58950). XR and JG acknowledge support from the Spanish Ministerio de Economia y Competitividad, MINECO (Grant number ESP2014-53603-P). HB and FC acknowledge support from the Centre National d’Etudes Spatiales (Grants 170048/00, 2016/4800000877).

References

  1. Ahadi, A., Ziad Saghir, M.: Contribution to the benchmark for ternary mixtures: Transient analysis in microgravity conditions. Eur. Phys. J. E 38, 25 (2015).  https://doi.org/10.1140/epje/i2015-15025-4 CrossRefGoogle Scholar
  2. Baaske, P., Bataller, H., Braibanti, M., Carpineti, M., Cerbino, R., Croccolo, F., Donev, A., Köhler, W., de Zarate, J. M. O., Vailati, A.: The NEUF-DIX space project - Non-EquilibriUm Fluctuations during DIffusion in compleX liquids. Eur. Phys. J. E 39, 119 (2016).  https://doi.org/10.1140/epje/i2016-16119-1 CrossRefGoogle Scholar
  3. Bataller, H., Giraudet, C., Croccolo, F., de Zárate, J. M. O.: Analysis of Non-Equilibrium Fluctuations In A Ternary Liquid Mixture. Microgravity Sci. Tec. 28, 611 (2016).  https://doi.org/10.1007/s12217-016-9517-6 CrossRefGoogle Scholar
  4. Blanco, P., Bou-Ali, M. M., Platten, J. K., de Mezquia, D. A., Madariaga, J. A., Santamaria, C.: Thermodiffusion coefficients of binary and ternary hydrocarbon mixtures. J. Chem. Phys. 132, 114506 (2010).  https://doi.org/10.1063/1.3354114 CrossRefGoogle Scholar
  5. Bou-Ali, M. M., Ahadi, A., de Mezquia, D. A., Galand, Q., Gebhardt, M., Khlybov, O., Köhler, W., Larranaga, M., Legros, J. C., Lyubimova, T., Mialdun, A., Ryzhkov, I., Saghir, M. Z., Shevtsova, V., Vaerenbergh, S. V.: Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction. Eur. Phys. J. E 38, 30 (2015).  https://doi.org/10.1140/epje/i2015-15030-7 CrossRefGoogle Scholar
  6. Dubert, D., Gavaldà, J., Laverón-Simavilla, A., Ruiz, X., Shevtsova, V.: Microgravity Sci. Tec. submitted (2018)Google Scholar
  7. Enge, W., Köhler, W.: Thermal diffusion in a critical polymer blend. Phys. Chem. Chem. Phys. 6, 2373 (2004).  https://doi.org/10.1039/B401087F CrossRefGoogle Scholar
  8. Galand, Q., Van Vaerenbergh, S.: Contribution to the benchmark for ternary mixtures: measurement of diffusion and Soret coefficients of ternary system tetrahydronaphtalene-isobutylbenzene-n-dodecane with mass fractions 80-10-10 at 25 C. Eur. Phys. J. E 38, 26 (2015).  https://doi.org/10.1140/epje/i2015-15026-3 CrossRefGoogle Scholar
  9. Galliero, G., Bataller, H., Croccolo, F., Vermorel, R., Artola, P. A., Rousseau, B.: Impact of Thermodiffusion on the Initial Vertical Distribution of Species in Hydrocarbon Reservoirs. Microgravity Sci. Tec. 28, 79 (2016).  https://doi.org/10.1007/s12217-015-9465-6 CrossRefGoogle Scholar
  10. Gebhardt, M., Köhler, W.: What can be learned from optical two-color diffusion and thermodiffusion experiments on ternary fluid mixtures?. J. Chem. Phys. 142, 084506 (2015a).  https://doi.org/10.1063/1.4908538
  11. Gebhardt, M., Köhler, W.: Contribution to the benchmark for ternary mixtures: measurement of the Soret coefficients of tetralin+ isobutylbenzene+n-dodecane at a composition of (0.8/0.1/0.1) mass fractions by two-color optical beam deflection. Eur. Phys. J. E 38, 24 (2015b).  https://doi.org/10.1140/epje/i2015-15024-5
  12. Gebhardt, M., Köhler, W.: Soret, thermodiffusion, and mean diffusion coefficients of the ternary mixture n-dodecane+isobutylbenzene+ 1, 2,3,4-tetrahydronaphthalene. J. Chem. Phys. 143, 164511 (2015c).  https://doi.org/10.1063/1.4934718
  13. Gebhardt, M., Köhler, W., Mialdun, A., Yasnou, V., Shevtsova, V.: Diffusion, thermal diffusion, and Soret coefficients, and optical contrast factors of the binary mixtures of dodecane, isobutylbenzene, and 1,2,3,4-tetrahydronaphthalene. J. Chem. Phys. 138, 114503 (2013).  https://doi.org/10.1063/1.4795432 CrossRefGoogle Scholar
  14. Ghiglia, D. C., Pritt, M. D.: Two-Dimensional Phase Unwrapping: Theory Algorithms, and Software. Wiley, New York (1998)MATHGoogle Scholar
  15. Giglio, M., Vendramini, A.: Thermal diffusion measurements near a consolute critical point. Phys. Rev. Lett. 34, 561 (1975).  https://doi.org/10.1103/PhysRevLett.34.561 CrossRefGoogle Scholar
  16. Hariharan, P., Oreb, B. F., Eiju, T.: Dgital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. Appl. Optics 26, 2504 (1987).  https://doi.org/10.1364/AO.26.002504 CrossRefGoogle Scholar
  17. Haugen, K. B., Firoozabadi, A.: On measurement of thermal diffusion coefficients in multicomponent mixtures. J. Chem. Phys. 122, 014516 (2005).  https://doi.org/10.1063/1.1829033 [http://link.aip.org/link/?JCPSA6/122/014516/1]CrossRefGoogle Scholar
  18. Itoh, K.: Analysis of the phase unwrapping algorithm. Appl. Opt. 21, 2470 (1982).  https://doi.org/10.1364/AO.21.002470 CrossRefGoogle Scholar
  19. Khlybov, O. A., Ryzhkov, I. I., Lyubimova, T. P.: Contribution to the benchmark for ternary mixtures: measurement of diffusion and Soret coefficients in 1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and dodecane onboard the ISS. Eur. Phys. J. E 38, 29 (2015).  https://doi.org/10.1140/epje/i2015-15029-0 CrossRefGoogle Scholar
  20. Kolodner, P., Williams, H., Moe, C.: Optical measurement of the Soret coefficient of ethanol/water solutions. J. Chem. Phys. 88, 6512 (1988)CrossRefGoogle Scholar
  21. Königer, A., Meier, B., Köhler, W.: Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol/water mixtures using a beam deflection technique. Philos. Mag. 89, 907 (2009).  https://doi.org/10.1080/14786430902814029 CrossRefGoogle Scholar
  22. Kreis, T.: Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley, New York (2005)Google Scholar
  23. Lapeira, E., Bou-Ali, M. M., Madariaga, J. A., Santamaria, C.: Thermodiffusion coefficients of water/ethanol mixtures for low water mass fractions. Microgravity Sci. Tec. 28, 553 (2016).  https://doi.org/10.1007/s12217-016-9508-7 CrossRefGoogle Scholar
  24. Lapeira, E., Gebhardt, M., Triller, T., Mialdun, A., Köhler, W., Shevtsova, V., Bou-Ali, M.M.: Transport properties of the binary mixtures of the three organic liquids toluene, methanol and cyclohexane. J. Chem. Phys. 146, 094507 (2017).  https://doi.org/10.1063/1.4977078 CrossRefGoogle Scholar
  25. Larrañaga, M., Bou-Ali, M. M., de Mezquia, D. A., Rees, D. A. S., Madariaga, J. A., Santamaria, C., Platten, J. K.: Contribution to the benchmark for ternary mixtures: determination of Soret coefficients by the thermogravitational and the sliding symmetric tubes techniques. Eur. Phys. J. E 38, 28 (2015).  https://doi.org/10.1140/epje/i2015-15028-1 CrossRefGoogle Scholar
  26. Leahy-Dios, A., Bou-Ali, M., Platten, J. K., Firoozabadi, A.: Measurements of molecular and thermal diffusion coefficients in ternary mixtures. J. Chem. Phys. 122, 234502 (2005).  https://doi.org/10.1063/1.1924503 CrossRefGoogle Scholar
  27. Leaist, D. G., Lu, H.: Conductometric determination of the Soret coefficients of a ternary mixed electrolyte. Reversed thermal diffusion of sodium chloride in aqueous sodium hydroxide solutions. J. Phys. Chem. 94, 447 (1990).  https://doi.org/10.1021/j100364a077 CrossRefGoogle Scholar
  28. Legros, J. C., Gaponenko, Y., Mialdun, A., Triller, T., Hammon, A., Bauer, C., Köhler, W., Shevtsova, V.: Investigation of Fickian diffusion in the ternary mixtures of water-ethanol-triethylene glycol and its binary pairs. Phys. Chem. Chem. Phys. 17, 27713 (2015).  https://doi.org/10.1039/C5CP04745E CrossRefGoogle Scholar
  29. Lyubimova, T. P., Zubova, N. A.: Onset of convection in a ternary mixture in a square cavity heated from above at various gravity levels. Microgravity Sci. Tec. 26, 241 (2014).  https://doi.org/10.1007/s12217-014-9383-z CrossRefGoogle Scholar
  30. Mazzoni, S., Shevtsova, V., Mialdun, A., Melnikov, D., any, Y. G., Lyubimova, T., Saghir, Z.: Vibrating liquids in space. Europhysics News 41, 14 (2010)CrossRefGoogle Scholar
  31. Mialdun, A., Legros, J. C., Yasnou, V., Sechenyh, V., Shevtsova, V.: Contribution to the benchmark for ternary mixtures: measurement of the Soret, diffusion and thermodiffusion coefficients in the ternary mixture THN/IBB/nC12 with 0.8/0.1/0.1 mass fractions in ground and orbital laboratories. Eur. Phys. J. E 38, 27 (2015).  https://doi.org/10.1140/epje/i2015-15027-2 CrossRefGoogle Scholar
  32. Ollé, J., Dubert, D., Gavaldà, J., Laveron-Simavilla, A., Ruiz, X., Shevtsova, V.: Onsite vibrational characterization of DCMIX2/3 experiments. Acta Astronaut. 140, 409 (2017).  https://doi.org/10.1016/j.actaastro.2017.09.007 CrossRefGoogle Scholar
  33. Platten, J. K., Bou-Ali, M. M., Costesèque, P., Dutrieux, J. F., Köhler, W., Leppla, C., Wiegand, S., Wittko, G.: Benchmark values for the Soret, thermal diffusion, and diffusion coefficients of three binary organic liquid mixtures. Philos. Mag. 83, 1965 (2003).  https://doi.org/10.1080/0141861031000108204 CrossRefGoogle Scholar
  34. Rapp, B.: Microfluidics: Modeling, Mechanics and Mathematics. Elsevier Science, Amsterdam (2016)MATHGoogle Scholar
  35. Robinson, D. W., Reid, G. T. (eds.): Interferogram Analysis, Digital Fringe Pattern Measurement Techniques. IOP Publishing Ltd., Bristol and Philadelphia (1993)Google Scholar
  36. Santos, C.I.A.V., Mialdun, A., Legros, J.C., Shevtsova, V.: Sorption equilibria and diffusion of toluene, methanol, and cyclohexane in/through elastomers. J. Appl. Polym. Sci. 133, 43449 (2016)CrossRefGoogle Scholar
  37. Sechenyh, V., Legros, J. C., Shevtsova, V.: Experimental and predicted refractive index properties in ternary mixtures of associated liquids. J. Chem. Thermodyn. 43, 1700 (2011).  https://doi.org/10.1016/j.jct.2011.05.034 CrossRefGoogle Scholar
  38. Sechenyh, V., Legros, J. C., Shevtsova, V.: Measurements of optical properties in binary and ternary mixtures containing cyclohexane, toluene, and methanol. J. Chem. Eng. Data 57, 1036 (2012).  https://doi.org/10.1021/je201277d CrossRefGoogle Scholar
  39. Sechenyh, V., Legros, J. C., Shevtsova, V.: Optical properties of binary and ternary liquid mixtures containing tetralin, isobutylbenzene and dodecane. J. Chem. Thermodyn. 62, 64 (2013).  https://doi.org/10.1016/j.jct.2013.01.026 CrossRefGoogle Scholar
  40. Sechenyh, V., Legros, J., Mialdun, A., de Zárate, J. M. O., Shevtsova, V.: Fickian diffusion in ternary mixtures composed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and n-dodecane. J. Phys. Chem. B 120, 535 (2016).  https://doi.org/10.1021/acs.jpcb.5b11143 CrossRefGoogle Scholar
  41. Servin, M., Quiroga, J. A., Padilla, J.: Fringe Pattern Analysis for Optical Metrology: Theory, Algorithms and Applications. Wiley-VCH, Weinheim (2014)CrossRefGoogle Scholar
  42. Shevtsova, V., Sechenyh, V., Nepomnyashchy, A., Legros, J. C.: Analysis of the application of optical two-wavelength techniques to measurement of the Soret coefficients in ternary mixtures. Philos. Mag. 91, 3498 (2011).  https://doi.org/10.1080/14786435.2011.586376 CrossRefGoogle Scholar
  43. Shevtsova, V., Santos, C., Sechenyh, V., Legros, J. C., Mialdun, A.: Diffusion and Soret in ternary mixtures. Preparation of the DCMIX2 experiment on the ISS. Microgravity Sci. Tec. 25, 275 (2014).  https://doi.org/10.1007/s12217-013-9349-6 CrossRefGoogle Scholar
  44. Shevtsova, V., Gaponenko, Y. A., Sechenyh, V., Melnikov, D. E., Lyubimova, T., Mialdun, A.: Dynamics of a binary mixture subjected to a temperature gradient and oscillatory forcing. J. Fluid Mech. 767, 290 (2015).  https://doi.org/10.1017/jfm.2015.50 MathSciNetCrossRefGoogle Scholar
  45. Taylor, R., Krishna, R.: Multicomponent Mass Transfer. Wiley Series in Chemical Engineering. Wiley, New York (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • T. Triller
    • 1
  • H. Bataller
    • 2
  • M. M. Bou-Ali
    • 3
  • M. Braibanti
    • 4
  • F. Croccolo
    • 2
  • J. M. Ezquerro
    • 5
  • Q. Galand
    • 6
  • Jna. Gavaldà
    • 7
  • E. Lapeira
    • 3
  • A. Laverón-Simavilla
    • 5
  • T. Lyubimova
    • 8
  • A. Mialdun
    • 6
  • J. M. Ortiz de Zárate
    • 9
  • J. Rodríguez
    • 5
  • X. Ruiz
    • 7
  • I. I. Ryzhkov
    • 10
  • V. Shevtsova
    • 6
  • S. Van Vaerenbergh
    • 6
  • W. Köhler
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany
  2. 2.Laboratoire des Fluides Complexes et leurs Réservoirs, UMR-5150E2S - Univ Pau & Pays Adour / CNRS / TOTALAngletFrance
  3. 3.Mechanical and Industrial Manufacturing DepartmentMGEP Mondragon Goi Eskola PoliteknikoaMondragonSpain
  4. 4.ESA-EstecNoordwijkThe Netherlands
  5. 5.E-USOC. ETSIAEUniversidad Politécnica de MadridMadridSpain
  6. 6.MRC, CP165/62Université libre de BruxellesBrusselsBelgium
  7. 7.Department of Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
  8. 8.Institute of Continuous Media Mechanics UB RASPermRussia
  9. 9.Departamento de Física Aplicada I, Facultad de FísicaUniversidad ComplutenseMadridSpain
  10. 10.Institute of Computational Modelling SB RASFederal Research Center KSC SB RASKrasnoyarskRussia

Personalised recommendations