Skip to main content
Log in

The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of “switching off” gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young’s equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young‘s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ababneh, A., Amirfazli, A., Elliott, J.A.: Effect of gravity on the macroscopic advancing contact angle of sessile drops. Can. J. Chem. Eng. 84, 39–41 (2006)

    Article  Google Scholar 

  • Allen, J.S.: An analytical solution for determination of small contact angles from sessile drops of arbitrary size. J. Colloid Interface Sci. 261, 481–489 (2003)

    Article  Google Scholar 

  • Andrade, J.D., Smith, L.M., Gregonis, D.E.: Surface and Interfacial Aspects of Biomedical Polymers, pp. 249–292. Springer US (2005)

  • Bico, J., Roman, B., Moulin, L., Boudaoud, A.: Adhesion: elastocapillary coalescence in wet hair. Nature 432, 690 (2004)

    Article  Google Scholar 

  • Bikerman, J.: Surface energy of solids. Top. Curr. Chem. 77, 1–66 (1978)

    Article  Google Scholar 

  • Brandon, S., Marmur, A.: Simulation of contact angle hysteresis on chemically heterogeneous surfaces. J. Colloid Interface Sci. 183, 351–355 (1996)

    Article  Google Scholar 

  • Calvimontes, A.: The measurement of the surface energy of solids using a laboratory drop tower. npj Microgravity. https://doi.org/10.1038/s41526-017-0031-y (2017)

  • Chibowski, E., et al.: Surface free energy components of glass from ellipsometry and zeta potential measurements. J. Colloid Interface Sci. 132, 54–61 (1989)

    Article  Google Scholar 

  • Chu, K.H., Xiao, R., Wang, E.N.: Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9, 413–417 (2010)

    Article  Google Scholar 

  • Diana, A., Castillo, M., Brutin, D., Steinberg, T.: Sessile drop wettability in normal and reduced gravity. Microgravity Sci. Technol. 24, 195–202 (2012)

    Article  Google Scholar 

  • Fox, H.W., Zisman, W. A.: The spreading of liquids on low energy surfaces. J. Colloid Sci. 5, 514–531 (1950)

    Article  Google Scholar 

  • Fujii, H., Nakae, H.: Effect of gravity on contact angle. Philos. Mag. A 72(6), 1505–1512 (1995)

    Article  Google Scholar 

  • Gao, L., McCarthy, T.J.: An attempt to correct the faulty intuition perpetuated by the Wenzel and the Cassie “Laws”. Langmuir 25(13), 7249–7255 (2009a)

  • Gao, L., McCarthy, T.J.: Wetting 101. Langmuir 25(24), 14105–14115 (2009b)

  • Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, Thermodynamics, vol. 1. Dover Publications, New York (1961)

    Google Scholar 

  • Grundke, K.: Handbook of Applied Surface and Colloid Chemistry. Wiley, New York (2001)

    Google Scholar 

  • Hawa, T., Zachariah, M. R.: Internal pressure and surface tensión of bare hydrogen coated silicon nanoparticles. J. Chem. Phys. 121(18), 9043–9049 (2004)

    Article  Google Scholar 

  • Hejda, F., Solar, P., Kousal, J.: Surface free energy determination by contact angle measurements—a comparison of various approaches. In: WDS’10 Proceedings of Contributed Papers, Part III, pp 25–30 (2010)

  • Ivanov, I.B., Kralchevsky, P.A., Nikolov, A.D.: Film and line tension effects on the attachment of particles to an interface. J. Colloid Interface Sci. 112, 97–107 (1986)

    Article  Google Scholar 

  • Janczuk, B., Bialopiotrowicz, T.: Surface free-energy components of liquids and low energy solids and contact angles. J. Colloid Interface Sci. 127, 189–204 (1989)

    Article  Google Scholar 

  • Johnson, R.E., Dettre, R.H.: Contact angle hysteresis. Adv. Chem. 43, 112–135 (1964)

    Article  Google Scholar 

  • Keisan Online Calculator: Available online: http://keisan.casio.com/exec/system/1223382199. Accessed: 18 Jan 2018 (2018a)

  • Keisan Online Calculator: Available online: http://keisan.casio.com/exec/system/1358171752. Accessed: 18 Jan 2018 (2018b)

  • Kwok, D.Y., et al.: Low-rate dynamic contact angles on polystyrene and the determination of solid surface tensions. Polymer Eng. Sci. 38, 1675–1684 (1998)

    Article  Google Scholar 

  • Leger, L., Joanny, J.F.: Liquid spreading. Rep. Prog. Phys. 55, 431–486 (1992)

    Article  Google Scholar 

  • Liu, Y., Wang, J.: Zhang, X. Sci. Rep. 3, 2008 (2013)

    Article  Google Scholar 

  • Lubarda, V.A., Talke, K.A.: Analysis of the equilibrium droplet based on an ellipsoidal droplet model. Langmuir 27, 10705–10713 (2011)

    Article  Google Scholar 

  • Makkonen, L.: Misinterpretation of the Shuttleworth equation. Scr. Mater. 66, 627–9 (2012)

    Article  Google Scholar 

  • Makkonen, L.: Misconceptions of the relation between surface energy and surface tension on a solid. Langmuir 30(9), 2580–2581 (2014)

    Article  Google Scholar 

  • Makkonen, L.: Young’s equation revisited. J Phys.: Condens. Matter 288, 135001 (2016)

    Google Scholar 

  • Malvadkar, N.A., Hancock, M.J., Sekeroglu, K., Dressick, W.J., Demirel, M.C.: An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. Mater. 9(12), 1023–1028 (2010)

    Article  Google Scholar 

  • Myers, D.: Surfaces, Interfaces and Colloids: Principles and Applications, pp 19–23. Wiley, New York (2002)

    Google Scholar 

  • Neumann, A.W., Li, D.: Equation of state for interfacial tensions of solid-liquid systems. Adv. Colloid Interface Sci 39, 299–345 (1992)

    Article  Google Scholar 

  • Orowan, E.: Surface energy and surface tension in solids and liquids. Proc. R. Soc. A 316, 473–91 (1970)

    Article  Google Scholar 

  • Owens, D.K., Wendt, R.C.: Estimation of the surface free energy of polymers. Appl. Polym. Sci. 13, 1741–1747 (1969)

    Article  Google Scholar 

  • Roura, P., Fort, J.: Local thermodynamic derivation of Young’s equation. J. Colloid Interface Sci. 272, 420–429 (2004)

    Article  Google Scholar 

  • Sheng, Y.J., Shaoyi, J., Tsao, H.K.: Effects of geometrical characteristics of surface roughness on droplet wetting. J. Chem. Phys. 127(23), 4704–7 (2007)

    Article  Google Scholar 

  • Shimizu, R.N., Demarquette, N.R.: Evaluation of surface energy of solid polymers using different models. Appl. Polym. Sci. 76, 1831–1845 (2000)

    Article  Google Scholar 

  • van Oss, C. J., Chaudhury, M.K., God, R.J.: Monopolar surfaces. Adv. Colloid Interface Sci. 28, 35–64 (1987)

    Article  Google Scholar 

  • Whyman, G., Bormashenko, E.: Oblate spheroid model for calculation of the shape and contact angles of heavy droplets. J. Colloid Interface Sci. 331, 174–177 (2009)

    Article  Google Scholar 

  • Whyman, E., Bomarschenko, G., Stein, T.: The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)

    Article  Google Scholar 

  • Wu, S.: Calculation of interfacial tension in polymer systems. J. Polymer Sci. Part C 34, 19–30 (1971)

    Article  Google Scholar 

  • Xue, C., Feng, F., Yu, Q.: The image processing of droplet for evaporation experiment in SJ-10. Microgravity Sci. Technol. 29, 221–228 (2017)

    Article  Google Scholar 

  • Young, T.: An Essay on the Cohesion of Fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  • Zhu, Z-Q., Wang, Y., Liu, Q-S., Xie, J-C.: Influence of bond numbers on behaviors of liquid drops deposited onto solid substrates. Microgravity Sci. Technol. 24, 181–188 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Calvimontes.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

This article belongs to the Topical Collection: Interdisciplinary Science Challenges for Gravity Dependent Phenomena in Physical and Biological Systems

Guest Editors: Jens Hauslage, Ruth Hemmersbach, Valentina Shevtsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvimontes, A. The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry. Microgravity Sci. Technol. 30, 277–293 (2018). https://doi.org/10.1007/s12217-018-9596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9596-7

Keywords

Navigation