The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry

Original Article
Part of the following topical collections:
  1. Interdisciplinary science challenges for gravity dependent phenomena in physical and biological systems


A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of “switching off” gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young’s equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young‘s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.


Surface energy Interfacial energy Surface tension Wetting model Wetting thermodynamics Sessile drop shape Microgravity 


Compliance with Ethical Standards

Conflict of interest

The author declares no conflict of interest.


  1. Ababneh, A., Amirfazli, A., Elliott, J.A.: Effect of gravity on the macroscopic advancing contact angle of sessile drops. Can. J. Chem. Eng. 84, 39–41 (2006)CrossRefGoogle Scholar
  2. Allen, J.S.: An analytical solution for determination of small contact angles from sessile drops of arbitrary size. J. Colloid Interface Sci. 261, 481–489 (2003)CrossRefGoogle Scholar
  3. Andrade, J.D., Smith, L.M., Gregonis, D.E.: Surface and Interfacial Aspects of Biomedical Polymers, pp. 249–292. Springer US (2005)Google Scholar
  4. Bico, J., Roman, B., Moulin, L., Boudaoud, A.: Adhesion: elastocapillary coalescence in wet hair. Nature 432, 690 (2004)CrossRefGoogle Scholar
  5. Bikerman, J.: Surface energy of solids. Top. Curr. Chem. 77, 1–66 (1978)CrossRefGoogle Scholar
  6. Brandon, S., Marmur, A.: Simulation of contact angle hysteresis on chemically heterogeneous surfaces. J. Colloid Interface Sci. 183, 351–355 (1996)CrossRefGoogle Scholar
  7. Calvimontes, A.: The measurement of the surface energy of solids using a laboratory drop tower. npj Microgravity. (2017)
  8. Chibowski, E., et al.: Surface free energy components of glass from ellipsometry and zeta potential measurements. J. Colloid Interface Sci. 132, 54–61 (1989)CrossRefGoogle Scholar
  9. Chu, K.H., Xiao, R., Wang, E.N.: Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9, 413–417 (2010)CrossRefGoogle Scholar
  10. Diana, A., Castillo, M., Brutin, D., Steinberg, T.: Sessile drop wettability in normal and reduced gravity. Microgravity Sci. Technol. 24, 195–202 (2012)CrossRefGoogle Scholar
  11. Fox, H.W., Zisman, W. A.: The spreading of liquids on low energy surfaces. J. Colloid Sci. 5, 514–531 (1950)CrossRefGoogle Scholar
  12. Fujii, H., Nakae, H.: Effect of gravity on contact angle. Philos. Mag. A 72(6), 1505–1512 (1995)CrossRefGoogle Scholar
  13. Gao, L., McCarthy, T.J.: An attempt to correct the faulty intuition perpetuated by the Wenzel and the Cassie “Laws”. Langmuir 25(13), 7249–7255 (2009a)Google Scholar
  14. Gao, L., McCarthy, T.J.: Wetting 101. Langmuir 25(24), 14105–14115 (2009b)Google Scholar
  15. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, Thermodynamics, vol. 1. Dover Publications, New York (1961)Google Scholar
  16. Grundke, K.: Handbook of Applied Surface and Colloid Chemistry. Wiley, New York (2001)Google Scholar
  17. Hawa, T., Zachariah, M. R.: Internal pressure and surface tensión of bare hydrogen coated silicon nanoparticles. J. Chem. Phys. 121(18), 9043–9049 (2004)CrossRefGoogle Scholar
  18. Hejda, F., Solar, P., Kousal, J.: Surface free energy determination by contact angle measurements—a comparison of various approaches. In: WDS’10 Proceedings of Contributed Papers, Part III, pp 25–30 (2010)Google Scholar
  19. Ivanov, I.B., Kralchevsky, P.A., Nikolov, A.D.: Film and line tension effects on the attachment of particles to an interface. J. Colloid Interface Sci. 112, 97–107 (1986)CrossRefGoogle Scholar
  20. Janczuk, B., Bialopiotrowicz, T.: Surface free-energy components of liquids and low energy solids and contact angles. J. Colloid Interface Sci. 127, 189–204 (1989)CrossRefGoogle Scholar
  21. Johnson, R.E., Dettre, R.H.: Contact angle hysteresis. Adv. Chem. 43, 112–135 (1964)CrossRefGoogle Scholar
  22. Keisan Online Calculator: Available online: Accessed: 18 Jan 2018 (2018a)
  23. Keisan Online Calculator: Available online: Accessed: 18 Jan 2018 (2018b)
  24. Kwok, D.Y., et al.: Low-rate dynamic contact angles on polystyrene and the determination of solid surface tensions. Polymer Eng. Sci. 38, 1675–1684 (1998)CrossRefGoogle Scholar
  25. Leger, L., Joanny, J.F.: Liquid spreading. Rep. Prog. Phys. 55, 431–486 (1992)CrossRefGoogle Scholar
  26. Liu, Y., Wang, J.: Zhang, X. Sci. Rep. 3, 2008 (2013)CrossRefGoogle Scholar
  27. Lubarda, V.A., Talke, K.A.: Analysis of the equilibrium droplet based on an ellipsoidal droplet model. Langmuir 27, 10705–10713 (2011)CrossRefGoogle Scholar
  28. Makkonen, L.: Misinterpretation of the Shuttleworth equation. Scr. Mater. 66, 627–9 (2012)CrossRefGoogle Scholar
  29. Makkonen, L.: Misconceptions of the relation between surface energy and surface tension on a solid. Langmuir 30(9), 2580–2581 (2014)CrossRefGoogle Scholar
  30. Makkonen, L.: Young’s equation revisited. J Phys.: Condens. Matter 288, 135001 (2016)Google Scholar
  31. Malvadkar, N.A., Hancock, M.J., Sekeroglu, K., Dressick, W.J., Demirel, M.C.: An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. Mater. 9(12), 1023–1028 (2010)CrossRefGoogle Scholar
  32. Myers, D.: Surfaces, Interfaces and Colloids: Principles and Applications, pp 19–23. Wiley, New York (2002)Google Scholar
  33. Neumann, A.W., Li, D.: Equation of state for interfacial tensions of solid-liquid systems. Adv. Colloid Interface Sci 39, 299–345 (1992)CrossRefGoogle Scholar
  34. Orowan, E.: Surface energy and surface tension in solids and liquids. Proc. R. Soc. A 316, 473–91 (1970)CrossRefGoogle Scholar
  35. Owens, D.K., Wendt, R.C.: Estimation of the surface free energy of polymers. Appl. Polym. Sci. 13, 1741–1747 (1969)CrossRefGoogle Scholar
  36. Roura, P., Fort, J.: Local thermodynamic derivation of Young’s equation. J. Colloid Interface Sci. 272, 420–429 (2004)CrossRefGoogle Scholar
  37. Sheng, Y.J., Shaoyi, J., Tsao, H.K.: Effects of geometrical characteristics of surface roughness on droplet wetting. J. Chem. Phys. 127(23), 4704–7 (2007)CrossRefGoogle Scholar
  38. Shimizu, R.N., Demarquette, N.R.: Evaluation of surface energy of solid polymers using different models. Appl. Polym. Sci. 76, 1831–1845 (2000)CrossRefGoogle Scholar
  39. van Oss, C. J., Chaudhury, M.K., God, R.J.: Monopolar surfaces. Adv. Colloid Interface Sci. 28, 35–64 (1987)CrossRefGoogle Scholar
  40. Whyman, G., Bormashenko, E.: Oblate spheroid model for calculation of the shape and contact angles of heavy droplets. J. Colloid Interface Sci. 331, 174–177 (2009)CrossRefGoogle Scholar
  41. Whyman, E., Bomarschenko, G., Stein, T.: The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)CrossRefGoogle Scholar
  42. Wu, S.: Calculation of interfacial tension in polymer systems. J. Polymer Sci. Part C 34, 19–30 (1971)CrossRefGoogle Scholar
  43. Xue, C., Feng, F., Yu, Q.: The image processing of droplet for evaporation experiment in SJ-10. Microgravity Sci. Technol. 29, 221–228 (2017)CrossRefGoogle Scholar
  44. Young, T.: An Essay on the Cohesion of Fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  45. Zhu, Z-Q., Wang, Y., Liu, Q-S., Xie, J-C.: Influence of bond numbers on behaviors of liquid drops deposited onto solid substrates. Microgravity Sci. Technol. 24, 181–188 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Predevelopment, Division Dish CareBSH Hausgeräte GmbH (a subsidiary of Robert Bosch GmbH)Dillingen an der DonauGermany

Personalised recommendations