Microgravity Science and Technology

, Volume 25, Issue 2, pp 113–120 | Cite as

High Throughput Fluorescent Screening of Membrane Potential and Intracellular Calcium Concentration Under Variable Gravity Conditions

  • Florian P. M. Kohn
Original Article


In addition to the presence of specific gravity receptors in living organisms, biological membranes were found to directly respond to gravity changes. Among others, changes in membrane permeability and as a consequence in membrane potential and intracellular ion concentrations have been demonstrated mainly by using electrophysiological techniques. However, the acquired amount of data up to now is low due to technical limitations of electrophysiology in microgravity platforms. Optical techniques will be able to deliver much higher amounts of data here, especially in case high throughput techniques based on 96 well plate (or higher numbers of wells) readers can be used. In this manuscript we present a new set-up for parabolic flight campaigns based on a multi-purpose plate reader for photometric, luminescent and fluorometric measurements. In a first series of experiments during a parabolic flight campaign the system was verified for membrane potential and intracellular calcium concentration measurements of neuronal cells using fluorescent dyes.


Microgravity Fluorescence Membrane potential Intracellular calcium 96 well plate reader 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abemayor, E.: The effects of retinoic acid on the in vitro and in vivo growth of neuroblastoma cells. Laryngoscope 102(10), 1133–1149 (1992)CrossRefGoogle Scholar
  2. Biedler, J.L., Roffler-Tarlov, S., Schachner, M., Freedman, L.S.: Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38(11 Pt.1), 3751–3757 (1978)Google Scholar
  3. European Space Agency (ESA): European users guide to low gravity platforms, Erasmus Centre ESA, UIC-ESA-UM-0001 Issue 2 Revision 0 (2005)Google Scholar
  4. Goldermann, M., Hanke, W.: Ion channels are sensitive to gravity changes. Microgravity Sci. Technol. 13(1), 35–38 (2001)CrossRefGoogle Scholar
  5. Häder, D.P., Lebert, M., Helbling, E.W.: Variable fluorescence parameters in the filamentous Patagonian rhodophytes, Callithamnion gaudichaudii and Ceramium sp. under solar radiation. J. Photoch. Photobio. B 73(1–2), 87–99 (2004)CrossRefGoogle Scholar
  6. Häder, D.P., Hemmersbach, R., Lebert, M.: Gravity and the behavior of unicellular organisms. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  7. Hamamatsu Data Sheet: FDSS/μCell, (2011)
  8. Haugland, R.P.: The handbook: A Guide to fluorescent Probes and Labeling Technologies. Molecular Probes (Invitrogen), Eugene, USA (2005)Google Scholar
  9. Klink, O., Hanke W., Fernandes de Lima, V.M.: Stochastic gravitational forcing of an oscillating chemical reaction. Microgravity Sci. Technol. 23(4), 403–408 (2011)CrossRefGoogle Scholar
  10. Klinke, N., Goldermann, M., Rahmann, H., Hanke, W.: The bilayer block module: A system for automated measurement and remote controlled measurements of ion current fluctuations. Space Forum 2, 203–212 (1998)Google Scholar
  11. Klinke, N., Goldermann, M., Hanke, W.: The properties of alamethicin incorporated into planar lipid bilayers under the influence of microgravity. Acta Astronaut. 47, 771–773 (2000)CrossRefGoogle Scholar
  12. Meissner, K., Hanke, W.: Patch clamp experiments under microgravity. J. Gravit. Physiol. 9(1), 377–378 (2002)Google Scholar
  13. Meissner, K., Hanke, W.: Action potential properties are gravity dependent. Microgravity Sci. Technol. 17(2), 38–43 (2005)CrossRefGoogle Scholar
  14. Meissner, K., Piqueira, J.R.C., Hanke, W.: Fluorescent and dispersion experiments on biological membranes under micro-gravity. J. Gravit. Physiol. 11(2), 195–196 (2004)Google Scholar
  15. Påhlman, S., Ruusala, A.I., Abrahamsson, A., Mattson, M.E.K., Esscher, T.: Retinoic acid induced differentiation of cultured neuroblastoma cells. A comparison with phorbolester induced differentiation. Cell Diff. 14, 135–144 (1984)CrossRefGoogle Scholar
  16. Richter, P.R., Schuster, M., Meyer, I., Lebert, M., Häder, D.P.: Indications for acceleration-dependent changes of membrane potential in the flagellate Euglena gracilis. Protoplasma 229, 101–108 (2006)CrossRefGoogle Scholar
  17. Rösner, H., Wassermann, T., Möller, W., Hanke, W.: Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229(2–4), 225–234 (2006)CrossRefGoogle Scholar
  18. Ross, R.A., Spengler, B.A., Biedler, J.L.: Coordinate morphological and biochemical interconversions of human neuroblastoma cells. J. Natl. Cancer Inst. 71(4), 741–747 (1983)Google Scholar
  19. Sidell, N., Chang, B., Yamashiro, J.M., Wada, R.K.: Transcriptional upregulation of retinoic acid receptor β (RARβ) expression by phenylacetate in human neuroblastoma cells. Exp. Cell Res. 239(1), 169–174 (1998)CrossRefGoogle Scholar
  20. Toselli, M., Tosetti, P., Taglietti, V.: Functional changes in sodium conductances in the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J. Neurophysiol. 76(6), 3920–3927 (1996)Google Scholar
  21. Tosetti, P., Taglietti, V., Toselli, M.: Functional changes in potassium conductances of the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J. Neurophysiol. 79, 648–658 (1998)Google Scholar
  22. Wiedemann, M., Rahmann, H., Hanke, W.: Gravitational impact on ion channels incorporated into planar lipid bilayers. In: Tien, H.T., Ottova-Leitmannova A. (eds.) Planar Lipid Bilayers and their Applications, pp. 669–698. Elsevier Sciences (2003)Google Scholar
  23. Wiedemann, M., Kohn, F.P.M., Rösner, H., Hanke, W.R.L.: Self-organization and pattern-formation in neuronal systems under conditions of variable gravity. Springer Complexity, Springer Publishing Comp. (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institut für Physiologie 230bUniversität HohenheimStuttgartGermany

Personalised recommendations