Prey–predator–scavenger model with Monod–Haldane type functional response


In this paper, we have developed a prey, predator and scavenger interaction dynamical model. The positivity, boundedness and stability conditions of our proposed system have been derived. Hopf bifurcation analysis has been done theoretically with respect to half saturation constant in the absence of direct measure of inhibitory effects \((\phi _1)\). Also, we have numerically studied Hopf bifurcation with respect to direct effects of inhibitory effects \((\phi _2)\) related to Monod–Haldane type functional response, carrying capacity of prey \((\gamma )\), death rate of scavenger \((\mu )\), conservation rate of prey \((\alpha )\) and harvesting rate of predator \((\eta )\). It is observed that the intra-species competition can lead our proposed system towards stability. It is also found that the harvesting of predator can control the chaotic dynamics of our proposed system. The increase of death rate of scavenger species can be stabilized our proposed system. Finally, some numerical simulation results have been presented for better understanding the dynamics of our proposed model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1924)

    Google Scholar 

  2. 2.

    Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  Google Scholar 

  3. 3.

    Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45, 50–60 (1965)

    Google Scholar 

  4. 4.

    Murray, J.D.: Mathematical Biology I: An Introduction. Springer, Berlin (2002)

    Google Scholar 

  5. 5.

    May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1974)

    Google Scholar 

  6. 6.

    Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707–723 (1968)

    Article  Google Scholar 

  7. 7.

    Collings, J.B.: The effects of the functional response on the bifurcation behavior of a mite predator–prey interaction model. J. Math. Biol. 36, 149–168 (1997)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Jang, S.R.J., Baglama, J., Rick, J.: Nutrient–phytoplankton–zooplankton models with a toxin. Math Comput Model 43, 105–118 (2006)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Mukkhopadhyay, B., Bhattacharya, R.: Modelling phytoplankton allelopathy in nutrient-plankton model with spetial heterogeneity. Ecol. Model. 198, 163–173 (2006)

    Article  Google Scholar 

  10. 10.

    Haldane, J.B.S.: Enzymes. Longmans, Green and Co, London (1930)

    Google Scholar 

  11. 11.

    Sugie, J., Howell, J.A.: Kinetics of phenol oxidation by washed cell. Biotechnol. Bio-eng. 23, 2039–2049 (1980)

    Google Scholar 

  12. 12.

    Tener, J.S.: Muskoxen. Biotechnol Bioeng. Ottawa: Queens Printer (1995)

  13. 13.

    Holmes, J.C., Bethel, W.M.: Modification of intermediate host behavior by parasites. Zool. J. Linn. Soc. 51, 123–149 (1972)

    Google Scholar 

  14. 14.

    Feng, X., Song, Y., An, X.: Dynamic behavior analysis of a prey–predator model with ratio-dependent Monod–Haldane functional response. Open Math 16, 623–635 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Pal, R., Basu, D., Banerjee, M.: Modelling of phytoplankton allelopathy with Monod–Haldane-type functional response: a mathematical study. BioSystems 95, 243–253 (2009)

    Article  Google Scholar 

  16. 16.

    Zhuang, K., Zhu, H.: Periodic solutions for a food chain system with Monod–Haldane functional response on time scales. Int. J. Math. Comput. Sci. 7, 487–490 (2013)

    Google Scholar 

  17. 17.

    Khajanchi, S.: Dynamic behavior of a Beddington–DeAngelis type stage structured predator–prey model. Appl. Math. Comput. 244, 344–360 (2014)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Khajanchi, S., Banerjee, S.: Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response. Appl. Math. Comput. 314, 193–198 (2017)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Raw, S.N., Mishra, P., Kumar, R., Thakur, S.: Complex behavior of prey–predator system exhibiting group defense: a mathematical modeling study. Chaos Soliton Fract 100, 74–90 (2017)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Raw, S.N., Mishra, P.: Modeling and analysis of inhibitory effect in Plankton–Fish model: application to the hypertrophic Swarzedzkie Lake in Western Poland. Nonlinear Anal RWA 46, 465–492 (2019)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Previte, J., Hoffman, K.: Period doubling cascades in a predator–prey model with a scavenger. SIAM Rev 55, 523–546 (2013)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Chauhan, S., Bhatia, S.K., Gupta, S.: Effect of Holling type-II function on dynamics of discrete prey–predator system with scavenger. IEEE Xplore

  23. 23.

    Gupta, R.P., Chandra, P.: Dynamical properties of a prey–predator–scavenger model with quadratic harvesting. Commun. Nonlinear Sci. Numer. Simul. 49, 202–214 (2017)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Jansen, J.E., Van Gorder, R.A.: Dynamics from a predator–prey–quarry–resource–scavenger model. Theor. Ecol. 11, 19–38 (2018)

    Article  Google Scholar 

  25. 25.

    Rai, V., Sreenivasan, R.: Period-doubling bifurcations leading to chaos in a model food chain. Ecol. Model. 69, 63–77 (1993)

    Article  Google Scholar 

  26. 26.

    Clark, C.W.: Mathematical Bioeconomics: Optimal Management of Renewable Resources. Wiley, New York (1976)

    Google Scholar 

  27. 27.

    Clark, C.W.: Bioeconomic Modelling and Fisheries Management. Wiley, New York (1985)

    Google Scholar 

  28. 28.

    Kar, T.K., Chaudhuri, K.S.: Harvesting in a two-prey one predator fishery: a bioeconomic model. J. Anziam. 45, 443–456 (2004)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Panja, P., Mondal, S.K., Jana, D.K.: Effects of toxicants on Phytoplankton–Zooplankton–Fish dynamics and harvesting. Chaos Soliton Fract. 104, 389–399 (2017)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Panja, P., Poria, S., Mondal, S.K.: Analysis of a harvested tritrophic food chain model in the presence of additional food for top predator. Int. J. Biomath. 11, 1850059 (2018)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Feng, P.: Analysis of a delayed predator–prey model with ratio-dependent functional response and quadratic harvesting. J. Appl. Math. Comput. 44, 251–262 (2014)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    Google Scholar 

  34. 34.

    Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2001)

    Google Scholar 

  35. 35.

    Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Application of Hopf Bifurcation, London Mathematical Society Lecture Note Series, vol. 41. Cambridge University Press, Cambridge (1981)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Prabir Panja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Proof of Theorem 1

From the first equation of system (2), we have

$$\begin{aligned} \frac{dx}{x}=\phi (x,y,z)dt \end{aligned}$$

where \(\phi (x,y,z)=(1-\gamma x)-\frac{y}{a_1+\phi _1x+\phi _2x^2}-z\). Then integrating the above equation within the limit [0, t], we have

$$\begin{aligned} x(t)=x(0)e^{\int _0^t \phi (x,y,z) dt}>0, \forall t \end{aligned}$$

Again, from the second equation of system (2), we have

$$\begin{aligned} \frac{dy}{y}=\psi (x,y,z)dt \end{aligned}$$

where \(\psi (x,y,z)=\frac{x}{a_1+\phi _1x+\phi _2x^2}-\delta -\eta y\). Integrating above equation in [0, t], it is obtained that

$$\begin{aligned} y(t)=y(0)e^{\int _0^t \psi (x,y,z) dt}>0, \forall t \end{aligned}$$

Also, from the third equation of system (2), we have

$$\begin{aligned} \frac{dz}{z}=\chi (x,y,z)dt \end{aligned}$$

where \(\chi (x,y,z)=x+\beta y-\mu -\nu z\). Then, integrating above equation in [0, t], we have

$$\begin{aligned} z(t)=z(0)e^{\int _0^t \chi (x,y,z) dt}>0, \forall t \end{aligned}$$

Hence all solutions of system (2) are non-negative. \(\square \)

Proof of Theorem 2

Let us construct a function

$$\begin{aligned} w=x+y+\frac{1}{\alpha }z \end{aligned}$$

Differentiating the above equation with respect to time, it is obtained that

$$\begin{aligned} \frac{d w}{d t}= & {} \frac{d x}{dt}+\frac{dy}{dt}+\frac{1}{\alpha }\frac{dz}{dt}\\= & {} x(1-\gamma x)-\frac{xy}{a_1+\phi _1x+\phi _2x^2}-xz+\frac{xy}{a_1 +\phi _1x+\phi _2x^2}-\delta y-\eta y^2\\&+\,xz+\frac{\beta }{\alpha }yz-\frac{\mu }{\alpha }z-\frac{\nu }{\alpha }z^2\\= & {} x(1-\gamma x)-\delta y-\eta y^2+\frac{\beta }{\alpha }yz-\frac{\mu }{\alpha }z-\frac{\nu }{\alpha }z^2 \end{aligned}$$

Now, we introduce a positive constant \(\sigma >0\), then we have

$$\begin{aligned} \frac{d w}{d t}+\sigma w= & {} (1+\sigma )x-(\delta -\sigma )y-\frac{1}{\alpha }(\mu -\sigma )z-\gamma x^2-\left( \eta y^2-\frac{\beta }{\alpha }yz+\frac{\nu }{\alpha }z^2\right) \nonumber \\\le & {} (1+\sigma )x-\gamma x^2- \left( \eta y^2-\frac{\beta }{\alpha }yz+\frac{\nu }{\alpha }z^2\right) , \text{ if } \sigma =\min \{\delta ,\mu \} \end{aligned}$$

The term \((\eta y^2-\frac{\beta }{\alpha }yz+\frac{\nu }{\alpha }z^2)\) is positive definite if \(\beta ^2>4\alpha \eta \nu \). Then equation (4) reduces to the form

$$\begin{aligned} \frac{d w}{d t}+\sigma w\le & {} (1+\sigma )x-\gamma x^2 \end{aligned}$$

Let \(f(x)=(1+\sigma )x-\gamma x^2\), then the maximum value of the function f(x) at \(x=\frac{1+\sigma }{2\gamma }\) is \(\frac{(1+\sigma )^2}{4\gamma }\). Then we can write

$$\begin{aligned} \frac{d w}{d t}+\sigma w\le & {} \frac{(1+\sigma )^2}{4\gamma } \end{aligned}$$

Solving Eq. (6), using differential inequality [33], it is obtained that

$$\begin{aligned} 0<w\le \frac{(1+\sigma )^2}{4\sigma \gamma }(1-e^{-\sigma t})+w(0)e^{-\sigma t} \end{aligned}$$

As \(t\rightarrow \infty \), we have

$$\begin{aligned} 0<w\le \frac{(1+\sigma )^2}{4\sigma \gamma } \end{aligned}$$

Hence all solutions of system (2) are bounded. \(\square \)

Proof of Theorem 8

Let us choose a suitable Lyapunov function

$$\begin{aligned} V=(x-x^*)-x^*ln\frac{x}{x^*}+(y-y^*)-y^*ln\frac{y}{y^*} +\frac{1}{\alpha }\bigg \{(z-z^*)-z^*ln\frac{z}{z^*}\bigg \} \end{aligned}$$

Differentiating above equation with respect to time, it is obtained that

$$\begin{aligned} \frac{d V}{dt}=\bigg (\frac{x-x^*}{x}\bigg )\frac{dx}{dt} +\bigg (\frac{y-y^*}{y}\bigg )\frac{dy}{dt}+\frac{1}{\alpha } \bigg (\frac{z-z^*}{z}\bigg )\frac{dz}{dt} \end{aligned}$$

Using the set of differential equation (2) and definition of equilibrium points, we have

$$\begin{aligned} \frac{d V}{dt}= & {} (x-x^*)\bigg \{1-\gamma x-\frac{y}{a_1+\phi _1x+\phi _2x^2}-z-1+\gamma x^*+\frac{y^*}{a_1+\phi _1x^*+\phi _2{x^*}^2}+z^*\bigg \}\\&+\,(y-y^*)\bigg \{\frac{x}{a_1+\phi _1x+\phi _2x^2}-\delta -\eta y-\frac{x^*}{a_1+\phi _1x^*+\phi _2{x^*}^2}+\delta +\eta y^*\bigg \}\\&+\,\frac{1}{\alpha }(z-z^*)\bigg \{\alpha x+\beta y-\mu -\nu z-\alpha x^*-\beta y^*+\mu +\nu z^*\bigg \}\\= & {} (x-x^*)\bigg \{-\gamma (x-x^*)-(z-z^*)-\bigg (\frac{y}{a_1 +\phi _1x+\phi _2x^2}-\frac{y^*}{a_1+\phi _1x^*+\phi _2{x^*}^2}\bigg )\bigg \}\\&+\,(y-y^*)\bigg \{\bigg (\frac{x}{a_1+\phi _1x+\phi _2x^2} -\frac{x^*}{a_1+\phi _1x^*+\phi _2{x^*}^2}\bigg )-\eta (y-y^*)\bigg \}\\&+\,\frac{1}{\alpha }(z-z^*)\bigg \{\alpha (x-x^*)+\beta (y-y^*)-\nu (z-z^*)\bigg \} \end{aligned}$$

After simplification of the above equation, it is obtained that

$$\begin{aligned} \frac{d V}{dt}= & {} -\gamma (x-x^*)^2-\eta (y-y^*)^2-\frac{\nu }{\alpha }(z-z^*)^2 +\frac{\beta }{\alpha }(y-y^*)(z-z^*)\\&-\,(x^*y-xy^*)\bigg \{\frac{(x-x^*)[\phi _1+\phi _2(x+x^*)]}{(a_1+\phi _1x+\phi _2x^2)(a_1+\phi _1x^*+\phi _2{x*}^2)}\bigg \}\\\le & {} -\gamma (x-x^*)^2-\eta (y-y^*)^2-\frac{\nu }{\alpha } (z-z^*)^2+\frac{\beta }{\alpha }(y-y^*)(z-z^*) \end{aligned}$$

if \(\frac{y}{y^*}>\frac{x}{x^*}>1\) and \(\frac{z}{z^*}>1\) holds.

Then, we can write

$$\begin{aligned} \frac{d V}{dt}\le & {} - \left[ \gamma (x-x^*)^2+\eta (y-y^*)^2+\frac{\nu }{\alpha }(z-z^*)^2-\frac{\beta }{\alpha }(y-y^*)(z-z^*)\right] \\ \frac{d V}{dt}\le & {} 0, \text{ if } \beta ^2<4\alpha \eta \nu \end{aligned}$$

Hence the proof. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panja, P. Prey–predator–scavenger model with Monod–Haldane type functional response. Rend. Circ. Mat. Palermo, II. Ser 69, 1205–1219 (2020).

Download citation


  • Prey
  • Predator
  • Scavenger
  • Stability
  • Hopf bifurcation

Mathematics Subject Classification

  • 92B05
  • 37C75
  • 37C25