Skip to main content
Log in

Extending the applicability of high-order iterative schemes under Kantorovich hypotheses and restricted convergence regions

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

We use restricted convergence regions to locate a more precise set than in earlier works containing the iterates of some high-order iterative schemes involving Banach space valued operators. This way the Lipschitz conditions involve tighter constants than before leading to weaker sufficient semilocal convergence criteria, tighter bounds on the error distances and an at least as precise information on the location of the solution. These improvements are obtained under the same computational effort since computing the old Lipschitz constants also requires the computation of the new constants as special cases. The same technique can be used to extend the applicability of other iterative schemes. Numerical examples further validate the new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Bermudez, C., Busquier, S., Legaz, M.J., Plaza, S.: On a family of high-order iterative method under Kantorovich conditions and some Applications, Abstract and Applied Analysis, vol. 2012, Article Id 782170, https://doi.org/10.1155/2012/782170 (2012)

  2. Amat, S., Busquier, S.: Third order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336(1), 243–261 (2007)

    Article  MathSciNet  Google Scholar 

  3. Amat, S., Busquier, S., Gutirrez, J.M.: An adaptive version of a fourth-order iterative method for quadratic equations. J. Comput. Appl. Math. 191(2), 259–268 (2006)

    Article  MathSciNet  Google Scholar 

  4. Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Series: Studies in Computational Mathematics, vol. 15. Elsevier, New York (2007)

    Google Scholar 

  5. Argyros, I.K.: Improving the order and rates of convergence for the super-Halley method in Banach spaces. Korean J. Comput. Appl. Math. 5(2), 465–474 (1998)

    Article  MathSciNet  Google Scholar 

  6. Argyros, I.K.: The convergence of a Halley–Chebysheff-type method under Newton–Kantorovich hypotheses. Appl. Math. Lett. 6(5), 71–74 (1993)

    Article  MathSciNet  Google Scholar 

  7. Argyros, I.K., Magréñan, A.A.: Iterative Methods and Their Dynamics with Applications. CRC Press, New York (2017)

    Book  Google Scholar 

  8. Argyros, I.K., George, S., Alberto Magréñan, A.: Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)

    Article  MathSciNet  Google Scholar 

  9. Argyros, I.K., George, S., Thapa, N.: Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications. Volume I, ISBN:978-1-53613-361-5, Nova Science Publishers (2018)

  10. Argyros, I.K., George, S., Thapa, N.: Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications, Mathematics Research Developments series, Volume II, ISBN: 978-1-53613-309-7, Nova Science Publishers (2018)

  11. Ezquerro, J.A., Grau-Sanchez, M., Grau, A., Hernandez, M.A., Noguera, M., Romero, N.: On iterative methods with accelerated convergence for solving systems of non-linear equations. J. Optim. Theory Appl. 151(1), 163–174 (2011)

    Article  MathSciNet  Google Scholar 

  12. Ezquerro, J.A., Hernandez, M.A.: New Kantorovich-type conditions for Halley’s method. Appl. Numer. Anal. Comput. Math. 2(1), 70–77 (2005)

    Article  MathSciNet  Google Scholar 

  13. Hernandez, M.A., Salanova, M.A.: Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method. J. Comput. Appl. Math. 126(1–2), 131–143 (2000)

    Article  MathSciNet  Google Scholar 

  14. Magréñan, A.A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–225 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Magréñan, A.A., Argyros, I.K.: Improved convergence analysis for Newton-like methods. Numer. Algor. 71(4), 811–826 (2016). https://doi.org/10.1007/s11075-015-0025-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Romero, N.: Familias parametricas de procesos iterativos de alto orden de convergencia (Ph.D. thesis), http://dialnet.unirioja.es/(2006)

  17. Traub, J.F.: Iterative methods for the solution of equations, AMS Chelsea Publishing (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobha M. Erappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., George, S. & Erappa, S.M. Extending the applicability of high-order iterative schemes under Kantorovich hypotheses and restricted convergence regions. Rend. Circ. Mat. Palermo, II. Ser 69, 1107–1113 (2020). https://doi.org/10.1007/s12215-019-00460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-019-00460-x

Keywords

Mathematics Subject Classification

Navigation