Properties of the Riemann–Lebesgue integrability in the non-additive case


We study Riemann–Lebesgue integrability of a vector function relative to an arbitrary non-negative set function. We obtain some classical integral properties. Results regarding the continuity properties of the integral and relationships among Riemann–Lebesgue, Birkhoff simple and Gould integrabilities are also established.

This is a preview of subscription content, log in to check access.


  1. 1.

    Birkhoff, G.: Integration of functions with values in a Banach space. Trans. Am. Math. Soc. 38(2), 357–378 (1935)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Balcerzak, M., Musial, K.: A convergence theorem for the Birkhoff integral. Funct. Approx. Comment. Math. 50(1), 161–168 (2014)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Boccuto, A., Candeloro, D., Sambucini, A.R.: Henstock multivalued integrability in Banach lattices with respect to pointwise non atomic measures. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26(4), 363–383 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Boccuto, A., Minotti, A.M., Sambucini, A.R.: Set-valued Kurzweil-Henstock integral in Riesz space setting. PanAm. Math. J. 23(1), 57–74 (2013)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Boccuto, A., Sambucini, A.R.: A note on comparison between Birkhoff and Mc Shane integrals for multifunctions. Real Anal. Exchange 37(2), 3–15 (2012)

    Google Scholar 

  6. 6.

    Candeloro, D., Di Piazza, L., Musial, K., Sambucini, A.R.: Gauge integrals and selections of weakly compact valued multifunctions. J.M.A.A. 441(1), 293–308 (2016).

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Candeloro, D., Di Piazza, L., Musial, K., Sambucini, A.R.: Relations among gauge and Pettis integrals for multifunctions with weakly compact convex values. Ann. Mat. 197(1), 171–183 (2018).

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Candeloro, D., Sambucini, A.R.: Comparison between some norm and order gauge integrals in Banach lattices. Pan Am. Math. J. 25(3), 1–16 (2015)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Candeloro, D., Croitoru, A., Gavriluţ, A., Sambucini, A.R.: Atomicity related to non-additive integrability. Rend. Circolo Matem. Palermo 65(3), 435–449 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Candeloro, D., Croitoru, A., Gavriluţ, A., Sambucini, A.R.: An extension of the Birkhoff integrability for multifunctions. Mediterr. J. Math. 13(5), 2551–2575 (2016)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Candeloro, D., Croitoru, A., Gavriluţ, A., Sambucini, A.R.: A multivalued version of the Radon-Nikodym theorem, via the single-valued Gould integral. Aust. J. Math. Anal. Appl. 15(2), art. 9, 1–16 (2018)

  12. 12.

    Caponetti, D., Marraffa, V., Naralenkov, K.: On the integration of Riemann-measurable vector-valued functions. Monatsh. Math. 182(3), 513–536 (2017)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Cascales, B., Rodriguez, J.: Birkhoff integral for multi-valued functions. J. Math. Anal. Appl. 297(2), 540–560 (2004)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Cascales, B., Rodriguez, J.: Birkhoff integral and the property of Bourgain. Math. Ann. 331(2), 259–279 (2005)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Croitoru, A., Gavriluţ, A.: Comparison between Birkhoff integral and Gould integral. Mediterr. J. Math. 12, 329–347 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Di Piazza, L., Marraffa, V.: The Mc Shane, PU and Henstock integrals of Banach valued functions. Czechoslov. Math. J. 52(3), 609–633 (2002)

    Article  Google Scholar 

  17. 17.

    Di Piazza, L., Preiss, D.: When do McShane and Pettis integrals coincide? Ill. J. Math. 47(4), 1177–1187 (2003)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Di Piazza, L., Marraffa, V., Musial, K.: Variational Henstock integrability of Banach space valued functions. Math. Bohem. 141(2), 287–296 (2016)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Fernandez, A., Mayoral, F., Naranjo, F., Rodriguez, J.: On Birkhoff integrability for scalar functions and vector measures. Monatsh. Math. 157, 131–142 (2009)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Fremlin, D.H.: The McShane and Birkhoff integrals of vector-valued functions. University of Essex Mathematics Department Research Report 92-10, version of 13.10.04.

  21. 21.

    Gavriluţ, A., Petcu, A.: A Gould type integral with respect to a submeasure. An. Şt. Univ. Al. I. Cuza Iaşi 53(2), 351–368 (2007)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Gavriluţ, A.: A Gould type integral with respect to a multisubmeasure. Math. Slovaca 58, 43–62 (2008)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Gavriluţ, A.: A generalized Gould type integral with respect to a multisubmeasure. Math. Slovaca 60, 289–318 (2010)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Gavriluţ, A., Iosif, A., Croitoru, A.: The Gould integral in Banach lattices. Positivity 19(1), 65–82 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Gould, G.G.: On integration of vector-valued measures. Proc. Lond. Math. Soc. 15, 193–225 (1965)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Kadets, V.M., Tseytlin, L.M.: On integration of non-integrable vector-valued functions. Mat. Fiz. Anal. Geom. 7, 49–65 (2000)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Kadets, V.M., Shumyatskiy, B., Shvidkoy, R., Tseytlin, L.M., Zheltukhin, K.: Some remarks on vector-valued integration. Mat. Fiz. Anal. Geom. 9, 48–65 (2002)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Maraffa, V.: A Birkhoff type integral and the Bourgain property in a locally convex space. Real. Anal. Exchange 32(2), 409–428 (2006–2007)

  29. 29.

    Memetaj, S.B.: Some convergence theorems for bk-integral in locally convex spaces. Tatra Mt. Math. Publ. 46(1), 29–40 (2010)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Pap, E.: An integral generated by decomposable measure. Univ. u Novom Sadu Zh. Rad. Prirod. Mat. Fak. Ser. Mat. 20, 135–144 (1990)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Pap, E.: Pseudo-additive measures and their applications. In: Pap, E. (ed.) Handbook of measure theory, II, pp. 1403–1465. Elsevier, Amsterdam (2002)

    Google Scholar 

  32. 32.

    Popov, M.M.: On integrability in \(F\)-spaces. Stud. Math. 110(3), 205–220 (1994)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Potyrala, M.: Some remarks about Birkhoff and Riemann–Lebesgue integrability of vector valued functions. Tatra Mt. Math. Publ. 35, 97–106 (2007)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Potyrala, M.: The Birkhoff and variational McShane integral of vector valued functions. Folia Math. Acta Univ. Lodziensis 13, 31–40 (2006)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Precupanu, A., Croitoru, A.: A Gould type integral with respect to a multimeasure I/II. An. Şt. Univ. “Al.I. Cuza” Iaşi 48, 165–200 (2002)/49, 183–207 (2003)

  36. 36.

    Precupanu, A., Gavriluţ, A., Croitoru, A.: A fuzzy Gould type integral. Fuzzy Sets Syst. 161, 661–680 (2010)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Precupanu, A., Satco, B.: The Aumann-Gould integral. Mediterr. J. Math. 5, 429–441 (2008)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Rodriguez, J.: Convergence theorems for the Birkhoff integral. Houston J. Math. 35, 541–551 (2009)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Rodriguez, J.: Pointwise limits of Birkhoff integrable functions. Proc. Am. Math. Soc. 137, 235–245 (2009)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Rodriguez, J.: Some examples in vector integration. Bull. Aust. Math. Soc. 80(3), 384–392 (2009)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Sipos, J.: Integral with respect to a pre-measure. Math. Slovaca 29, 141–155 (1979)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Sofian-Boca, F.N.: Another Gould type integral with respect to a multisubmeasure. An. Ştiinţ. Univ. ”Al.I. Cuza” Iaşi 57, 13–30 (2011)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Spaltenstein, N.: A definition of integrals. J. Math. Anal. Appl. 195, 835–871 (1995)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Torra, V.: Use and applications of non-additive measures and integrals. In: Torra, V., Narukawa, Y., Sugeno, M. (eds.) Non-additive measures, theory and applications. Studies in fuzziness and soft computing, vol. 310, pp. 1–33. Springer, Berlin (2014).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Anna Rita Sambucini.

Additional information

Dedicated to Mimmo: a Master, a Colleague, a dear Friend and a Gentleman who passed away, but lives in our hearts.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first and the last authors have been partially supported by University of Perugia – Department of Mathematics and Computer Sciences – Ricerca di Base 2018 “Metodi di Teoria dell’Approssimazione, Analisi Reale, Analisi Nonlineare e loro applicazioni” and the last author by GNAMPA - INDAM (Italy) “Metodi di Analisi Reale per l’Approssimazione attraverso operatori discreti e applicazioni” (2019).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Candeloro, D., Croitoru, A., Gavriluţ, A. et al. Properties of the Riemann–Lebesgue integrability in the non-additive case. Rend. Circ. Mat. Palermo, II. Ser 69, 577–589 (2020).

Download citation


  • Riemann–Lebesgue integral
  • Birkhoff simple integral
  • Gould integral
  • Non-negative set function
  • Monotone measure

Mathematics Subject Classification

  • 28B20
  • 28C15
  • 49J53