Global dynamics of a virus model with invariant algebraic surfaces


In this paper by using the Poincaré compactification in \({{\mathbb {R}}}^3\) we make a global analysis for the virus system

$$\begin{aligned} {\dot{x}}=\lambda -dx-\beta xz, \quad {\dot{y}} = -ay+\beta xz \quad {\dot{z}} = ky-\mu z \end{aligned}$$

with \((x, y, z) \in {{\mathbb {R}}}^3\), \(\beta >0\), \(\lambda , a, d, k\) and \(\mu \) are nonnegative parameters due to their biological meaning. We give the complete description of its dynamics on the sphere at infinity. For two sets of the parameter values the system has invariant algebraic surfaces. For these two sets we provide the global phase portraits of the virus system in the Poincaré ball (i.e. in the compactification of \({{\mathbb {R}}}^3\) with the sphere \({\mathbb {S}}^2\) of the infinity).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Alavez-Ramírez, J., Blé, G., Castellanos, V., Llibre, J.: On the global flow of a 3-dimensional Lotka–Volterra system. Nonlinear Anal. 75, 4114–4125 (2012)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Cima, A., Llibre, J.: Bounded polynomial vector fields. Trans. Am. Math. Soc. 318, 557–579 (1990)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, New York (2006)

    Google Scholar 

  4. 4.

    De Leenheer, P., Smith, H.L.: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63, 1313–1327 (2003)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Hirsch, H.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

    Google Scholar 

  6. 6.

    Llibre, J., Messias, M., Reinol, A.C.: Quadratic polynomial differential systems in \({\mathbb{R}}^3\) having invariant planes with total multiplicity \(9\). Rendiconti del Circolo Matematico di Palermo 67, 569–580 (2018)

    MATH  Google Scholar 

  7. 7.

    May, R.M., Nowak, M.A.: Virus Dynamics. Mathematical Principles of Immunology and Virology. Oxford University Press, New York (2000)

    Google Scholar 

  8. 8.

    Min, L., Su, Y., Kuang, Y.: Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mount. J. Math. 38, 1–13 (2008)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Valls, C.: Invariant algebraic surfaces fo a virus dynamics. Z. Angew. Math. Phys. 66, 1315–1328 (2015)

    MathSciNet  Article  Google Scholar 

Download references


The first author is partially supported by FAPEMIG Grants APQ-01086-15 and APQ-01158-17. The second author is partially supported by the Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación grant MTM2016-77278-P (FEDER), the Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017 SGR 1617, and the European project Dynamics-H2020-MSCA-RISE-2017-777911. The third author is partially supported by FCT/Portugal through UID/MAT/04459/2013.

Author information



Corresponding author

Correspondence to Fabio Scalco Dias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dias, F.S., Llibre, J. & Valls, C. Global dynamics of a virus model with invariant algebraic surfaces. Rend. Circ. Mat. Palermo, II. Ser 69, 535–546 (2020).

Download citation


  • Invariant algebraic surfaces
  • Poincaré compactification
  • Phase portrait
  • Dynamics at infinity
  • Virus model

Mathematics Subject Classification

  • 34A34
  • 34C05
  • 34C14