Nef vector bundles on a projective space with first Chern class three


We classify nef vector bundles on a projective space with first Chern class three over an algebraically closed field of characteristic zero; we see, in particular, that these nef vector bundles are globally generated if the second Chern class is less than eight, and that there exist nef but non-globally generated vector bundles with second Chern class eight and nine on a projective plane.

This is a preview of subscription content, log in to check access.


  1. 1.

    Anghel, C., Manolache, N.: Globally generated vector bundles on \(\mathbb{P}^n\) with \(c_1=3\). Math. Nachr. 286(14–15), 1407–1423 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bănică, C.: Smooth reflexive sheaves. Rev. Roum. Math. Pures Appl. 36(9–10), 571–593 (1991)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Beilinson, A.A.: Coherent sheaves on \({P}^n\) and problems in linear algebra. Funktsional. Anal. i Prilozhen. 12(3), 214–216 (1978)

    Article  Google Scholar 

  4. 4.

    Bondal, A.I.: Representations of associative algebras and coherent sheaves. Izv. Akad. Nauk SSSR Ser. Mat. 53(1), 25–44 (1989)

    MathSciNet  Google Scholar 

  5. 5.

    Chiodera, L., Ellia, P.: Rank two globally generated vector bundles with \(c_1\le 5\). Rend. Istit. Mat. Univ. Trieste 44, 413–422 (2012)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Fulton, W.: Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 2, second edn. Springer, Berlin (1998)

    Google Scholar 

  7. 7.

    Kawamata, Y.: A generalization of Kodaira–Ramanujam’s vanishing theorem. Math. Ann. 261(1), 43–46 (1982)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kumar, N.M., Peterson, C., Rao, A.P.: Standard vector bundle deformations on \(\mathbb{P}^n\). In: Cutkosky, S.D., Eddidin, D., Qin, Z., Zhang, Q. (eds.) Vector Bundles and Representation Theory (Columbia, MO, 2002), no. 322 in Contemporary Mathematics, pp. 151–163. American Mathematical Society, Providence (2003)

    Google Scholar 

  9. 9.

    Langer, A.: Fano 4-folds with scroll structure. Nagoya Math. J. 150, 135–176 (1998)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Lazarsfeld, R.: Positivity in Algebraic Geometry. II. Positivity for Vector Bundles, and Multiplier Ideals., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 49. Springer, Berlin (2004)

    Google Scholar 

  11. 11.

    Ohno, M.: Nef vector bundles on a projective space or a hyperquadric with the first Chern class small. (2014) arXiv:1409.4191

  12. 12.

    Ohno, M.: Nef vector bundles on a projective space with first Chern class 3 and second Chern class 8. Matematiche (Catania) 72(2), 69–81 (2017)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Ohno, M., Terakawa, H.: A spectral sequence and nef vector bundles of the first Chern class two on hyperquadrics. Ann. Univ. Ferrara Sez. VII Sci. Mat. 60(2), 397–406 (2014)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces, Progress in Mathematics, vol. 3. Birkhäuser, Boston (1980)

    Google Scholar 

  15. 15.

    Peternell, T., Szurek, M., Wiśniewski, J.A.: Numerically effective vector bundles with small Chern classes. In: Hulek, K., Peternell, T., Schneider, M., Schreyer, F.O. (eds.) Complex Algebraic Varieties, Proceedings, Bayreuth, 1990, no. 1507 in Lecture Notes in Mathematics, pp. 145–156. Springer, Berlin (1992)

    Google Scholar 

  16. 16.

    Sato, E.: Uniform vector bundles on a projective space. J. Math. Soc. Jpn. 28(1), 123–132 (1976)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Sierra, J.C., Ugaglia, L.: Globally generated vector bundles on projective spaces II. J. Pure Appl. Algebra 218(1), 174–180 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Szurek, M., Wiśniewski, J.A.: On Fano manifolds, which are \(\mathbb{P}^k\)-bundles over \(\mathbb{P}^2\). Nagoya Math. J. 120, 89–101 (1990)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Tango, H.: An example of indecomposable vector bundle of rank \(n-1\) on \(\mathbf{P}^n\). J. Math. Kyoto Univ. 16(1), 137–141 (1976)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Trautmann, G.: Darstellung von Vektorraumbündeln über \(\mathbf{C}\setminus \{0\}\). Arch. Math. (Basel) 24, 303–313 (1973)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Vetter, U.: Zu einem Satz von G. Trautmann über den Rang gewisser kohärenter analytischer Moduln. Arch. Math. (Basel) 24, 158–161 (1973)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Viehweg, E.: Vanishing theorems. J. Reine Angew. Math. 335, 1–8 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Masahiro Ohno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by JSPS KAKENHI (C) Grant Number 15K04810.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohno, M. Nef vector bundles on a projective space with first Chern class three. Rend. Circ. Mat. Palermo, II. Ser 69, 425–458 (2020).

Download citation


  • Nef vector bundles
  • Fano bundles
  • Spectral sequences

Mathematics Subject Classification

  • 14J60
  • 14F05