Skip to main content

Advertisement

Log in

Gap functions and globally projected differential inclusions on Riemannian manifolds

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

We consider variational inequality problems on complete Riemannian manifolds and we introduce the globally projected differential inclusions associated with these problems. Then we show that every solution of a variational inequality problem is an equilibrium point of the associated globally projected differential inclusion. Finally, we prove that on a complete Riemannian manifold with nonpositive curvature, one can find a gap function for the variational inequality problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N.: Construction of the parallel transport in the Wasserstein space. Methods Appl. Anal. 15, 1–30 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60. Springer, New York (1989)

    Book  Google Scholar 

  3. Azagra, D., Ferrera, J., López-Mesas, F.: Nansmooth analysis and Hamilton–Jacobi equation on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bacciotti, A., Ceragioli, F., Mazzi, L.: Differential inclusions and monotonicity conditions for nonsmooth Lyapunov functions. Set Valued Var. Anal. 8, 299–309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Mechanical Control Systems. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  6. Canary, R.D., Epstein, D.B.A., Marden, A.: Fundamentals of Hyperbolic Geometry: Selected Expositions. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  7. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)

    Google Scholar 

  8. Do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  9. Ferreira, O.P.: Kantorovich’s theorem on Newton’s method in Riemannian manifolds. J. Complex. 18, 304–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greene, R.E., Shiohama, K.: Convex functions on complete noncompact manifolds: topological structure. Invent. Math. 63, 129–157 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hosseini, S., Pouryayevali, M.R.: Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. Nonlinear Anal. 74, 3884–3895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hosseini, S., Pouryayevali, M.R.: On the metric projection onto prox-regular subsets of Riemannian manifolds. Proc. Am. Math. Soc. 141, 233–244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kunze, M.: Non-Smooth Dynamical System. Lecture Notes in Math, vol. 1744. Springer, Berlin (2000)

    Book  Google Scholar 

  14. Li, S.L., Li, C., Liou, Y.C., Yao, J.C.: Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71, 5695–5706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, X.B., Zhou, L.W., Huang, N.J.: Gap functions and global error bounds for generalized mixed variational inequalities on Hadamard manifolds. J. Optim. Theory Appl. 168, 830–849 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ledyaev, Y.S., Zhu, Q.J.: Nonsmooth analysis on smooth manifolds. Trans. Am. Math. Soc. 359, 3687–3732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Malisoff, M., Krichman, M., Sontag, E.: Global stabilization for systems evolving on manifolds. J. Dyn. Control Syst. 12, 161–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52, 1491–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pappalardo, M., Passacantando, M.: Gap functions and Lyapunov functions. J. Global Optim. 28, 379–385 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pouryayevali, M.R., Radmanesh, H.: Trajectories of differential inclusions on Riemannian manifolds and invariance. Set-Valued Var. Anal. https://doi.org/10.1007/s11228-017-0463-2

  21. Rampazzo, F., Sussmann, H.J.: Commutators of flow maps of nonsmooth vector fields. J. Differ. Equ. 232, 134–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)

    Book  Google Scholar 

  23. Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 2(10), 338–354 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  24. Walter, R.: On the metric projection onto convex sets in Riemannian spaces. Arch. Math. (Basel) 25, 91–98 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajar Radmanesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radmanesh, H. Gap functions and globally projected differential inclusions on Riemannian manifolds. Rend. Circ. Mat. Palermo, II. Ser 68, 315–327 (2019). https://doi.org/10.1007/s12215-018-0361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-018-0361-y

Keywords

Mathematics Subject Classification

Navigation