Advertisement

An inverse approach to the center problem

  • Jaume Llibre
  • Rafael Ramírez
  • Valentín Ramírez
Article
  • 16 Downloads

Abstract

We consider analytic or polynomial vector fields of the form \({\mathcal {X}}=\left( -y+X\right) \dfrac{\partial }{\partial x}+\left( x+Y\right) \dfrac{\partial }{\partial y},\) where \(X=X(x,y))\) and \(Y=Y(x,y))\) start at least with terms of second order. It is well-known that \({\mathcal {X}}\) has a center at the origin if and only if \({\mathcal {X}}\) has a Liapunov–Poincaré local analytic first integral of the form \(H=\dfrac{1}{2}(x^2+y^2)+\sum _{j=3}^ {\infty } H_j\), where \(H_j=H_j(x,y)\) is a homogenous polynomial of degree j. The classical center-focus problem already studied by Poincaré consists in distinguishing when the origin of \({\mathcal {X}}\) is either a center or a focus. In this paper we study the inverse center problem, i.e. for a given analytic function H of the previous form defined in a neighborhood of the origin, we determine the analytic or polynomial vector field \({\mathcal {X}}\) for which H is a first integral. Moreover, given an analytic function \(V=1+\sum _{j=1}^ {\infty } V_j\) in a neighborhood of the origin, where \(V_j\) is a homogenous polynomial of degree j, we determine the analytic or polynomial vector field \({\mathcal {X}}\) for which V is a Reeb inverse integrating factor. We study the particular case of centers which have a local analytic first integral of the form \( H=\dfrac{1}{2}(x^2+y^2)\,\left( 1+ \sum _{j=1}^{\infty } \Upsilon _j\right) , \) in a neighborhood of the origin, where \(\Upsilon _j\) is a homogenous polynomial of degree j for \(j\ge 1.\) These centers are called weak centers, they contain the uniform isochronous centers and the isochronous holomorphic centers, but they do not coincide with the class of isochronous centers. We have characterized the expression of an analytic or polynomial differential system having a weak center at the origin We extended to analytic or polynomial differential systems the weak conditions of a center given by Alwash and Lloyd for linear centers with homogeneous polynomial nonlinearities. Furthermore the centers satisfying these weak conditions are weak centers.

Keywords

Center-focus problem Analytic planar differential system Liapunov’s constants Isochronous center Darboux’s first integral Weak condition for a center Weak center 

Mathematics Subject Classification

34C05 34C07 

Notes

Acknowledgements

The first author is partially supported by MINECO Grants MTM2016-77278-P and MTM2013-40998-P, and an AGAUR Grant Number 2017SGR-1617. The second author was partly supported by the Spanish Ministry of Education through Projects TIN2014-57364-C2-1-R, TSI2007-65406-C03-01 “AEGIS”.

References

  1. 1.
    Poincaré, H.: Sur l’intégration des équations différentielles du premier ordre et du premier degré I and II. Rendiconti del circolo matematico di Palermo 5, 161–191 (1891)CrossRefzbMATHGoogle Scholar
  2. 2.
    Poincaré, H.: Sur l’intégration des équations différentielles du premier ordre et du premier degré I and II. Rendiconti del circolo matematico di Palermo 11, 193–239 (1897)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dulac, H.: Détermination et integration d’ une classe d’ equations differentielle ayant pour point singulier un centre. Bull. Sci. Math Sér. 32, 230–252 (1908)zbMATHGoogle Scholar
  4. 4.
    Bendixson, I.: Sur les courbes définies par des equations differentielles. Acta Math. 24, 1–88 (1901)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Frommer, M.: Die Integralkurven einer gewohnlichen Di?erential-gleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen. Math. Ann. 99, 222–272 (1928)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liapounoff, M.A.: Problème général de la stabilité du mouvement, Annals of Mathematics Studies 17. Princeton University Press, Princeton (1947)zbMATHGoogle Scholar
  7. 7.
    Llibre, J., Ramírez, R., Ramírez, V.: An inverse approach to the center-focus problem for polynomial differential system with homogenous nonlinearities. J. Differ. Equ. 263, 3327–3369 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Malkin, I.G.: Criteria for center of a differential equation. Volg. Matem. Sb. 2, 87–91 (1964). (in Russian)MathSciNetGoogle Scholar
  9. 9.
    Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations, Graduate Studies in Mathematics, 86. American Mathematical Society, Providence, RI (2008)zbMATHGoogle Scholar
  10. 10.
    Malkin, I.G.: Stability Theory of Movements. Nauka, Moscow (1966). (in Russian)zbMATHGoogle Scholar
  11. 11.
    Bautin, N.N.: On the number of limit cycles appearing with variation of the coefficients from an equilibrium state of the type of a focus or a center, Mat. Sb. (N.S.) 30(72), 181–196 (1952)MathSciNetGoogle Scholar
  12. 12.
    Saharnikov, N.A.: Solution of the center focus problem in one case. Prikl. Mat. Meh. 14, 651–658 (1950)MathSciNetGoogle Scholar
  13. 13.
    Sibirskii, K.S.: Method of Invariants in the Qualitative Theory of Differential Equations. Acad. Sci. Moldavian SSR, Kishinev (1968). (in Russian)zbMATHGoogle Scholar
  14. 14.
    Reeb, G.: Sur certaines propiétés topologiques des variétés feuilletées , Wu, W.T., Reeb, G. (eds.), Sur les espaces fibrés et les variétés feuilletées, Tome XI, In: Actualités Sci. Indust. vol. 1183, Hermann et Cie, Paris (1952)Google Scholar
  15. 15.
    Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges). Bull. Sci. math. 2ème série 2, 60–96; 123–144; 151–200 (1878)Google Scholar
  16. 16.
    Christopher, C., Li, C.: Limit Cycles of Differential Equations, Advances Courses in Mathematics, CRM Barcelona. Birkhäuser Verlag, Basel (2007)Google Scholar
  17. 17.
    Llibre, J.: Integrability of polynomial differential systems. In: Cañada, A., Drabek, P., Fonda, A. (eds.) Handbook of Differential Equations, Ordinary Differential Equations, pp. 437–533. Elsevier, Amsterdam (2004)CrossRefGoogle Scholar
  18. 18.
    Zoladek, H.: The solution of the center-focus problem. Institute of Mathematics, University of Warsaw, Poland (1992)Google Scholar
  19. 19.
    Mikonenko, V.: A reflecting function of a family of functions. Differentsial’nye uravneniya 36, 1636–1641 (1989)MathSciNetGoogle Scholar
  20. 20.
    Llibre, J., Ramírez, R.: Inverse Problems in Ordinary Differential Equations and Applications, Progress in Mathematics, vol. 313. Birkhäuser, Basel (2016)CrossRefzbMATHGoogle Scholar
  21. 21.
    Sadovskaia, N.: Inverse problem in theory of ordinary differential equations. Thesis Ph.D., Univ. Politécnica de Cataluña (2002) (in Spanish)Google Scholar
  22. 22.
    Belitskii, G.: Smooth equivalence of germs of \(C^\infty \) of vector fields with one zero or a pair of pure imaginary eigenvalues. Funct. Anal. Appl. 20(4), 253–259 (1986)CrossRefzbMATHGoogle Scholar
  23. 23.
    Alwash, M.A., Lloyd, N.G.: Non-autonomous equations related to polynomial two dimensional systems. Proc. R. Soc. Edinb. 105 A, 129–152 (1987)CrossRefzbMATHGoogle Scholar
  24. 24.
    Conti, R.: Centers of planar polynomial systems. a review. Le Matematiche Vol. LIII, Fasc. II, 207–240 (1998)Google Scholar
  25. 25.
    Nemytskii, V.V., Stepanov, V.V.: Qualitative Theory of Differential Equations. Princeton University Press, Princeton (1960)zbMATHGoogle Scholar
  26. 26.
    Devlin, J.: Coexisting isochronous centers and non-isochronous centers. Bull. Lond. Math. 98, 495–500 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lukashevich, N.: Isochronism of the ecenter of certain systems of differential equations. Diff. Uravn. 1, 295–302 (1965). (in Russian)Google Scholar
  28. 28.
    Pleshkan, I.I.: A new method of investigating the isochronism of a system of two differential equations. Diff. Uravn. 5, 1083–1090 (1969). (in Russian)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Sternberg, S.: Lectures on Differential Geometry. Prentice Hall, Englewood Cliffs (1964)zbMATHGoogle Scholar
  30. 30.
    Llibre, J., Ramírez, R., Ramírez,V., Sadovskaia, N.: Centers and uniform isochronous centers of planar polynomial differential systems. Preprint (2017)Google Scholar
  31. 31.
    Mardeâić, P., Rousseau, C., Toni, B.: Linearization of isochronous center. J. Differ. Equ. 121, 67–108 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Chavarriga, J., Sabatini, M.: A survey on isochronous center. Qualit. Theory Dyn. Syst. 1, 1–70 (1999)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems, Universitext. Springer, Berlin (2006)zbMATHGoogle Scholar
  34. 34.
    Giné, J., Grau, M., Llibre, J.: On the extensions of the Darboux theory of integrability. Nonlinearity 26, 2221–2229 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhou, Z.: A new method for research on the center-focus problem of differential systems. Abstr. Appl. Anal. 2014, 1–5 (2014)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain
  2. 2.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.Universitat Central de BarcelonaBarcelonaSpain

Personalised recommendations