Characterization of a compact piezoelectric actuated microgripper based on double-stair bridge-type mechanism


This paper presents a compact flexure-based microgripper for grasping/releasing tasks. The microgripper is based on a double-stair bridge-type mechanism and consists of a bridge-type mechanism for amplifying the input displacement and the integrated parallelogram mechanisms for linearizing the motion at the microgripper jaws. The displacement transmission, amplification, linearization are accomplished in a single-stage. Stiffness modeling is established to characterize the output displacement, the displacement amplification ratio, and the input stiffness of the mechanism. The right-angle flexure hinges are utilized in the displacement amplification and transmission mechanisms to maintain the input stiffness of the mechanism. The structural design of the microgripper is optimized in such a way that a large output displacement can be achieved. Finite element analysis and experiments are conducted on the microgripper to verify the results of the analytical modeling. The proposed microgripper achieves a large output displacement of 543.8 μm with a displacement amplification ratio of 19.3. The experimental results indicate that the microgripper will be able to accommodate a grasping/releasing task.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Vidyaa V, Kanthababu M, Thilagar SH, Balasubramanian R (2018) Evaluation of macro sized metal based microgrippers for handling microcomponents. Precis Eng 54:403–411

    Article  Google Scholar 

  2. 2.

    Zubir MNM, Shirinzadeh B, Tian Y (2009) A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mech Mach Theory 44(12):2248–2264

    MATH  Article  Google Scholar 

  3. 3.

    Raghavendra MR, Kumar AS, Jagdish BN (2010) Design and analysis of flexure-hinge parameter in microgripper. Int J Adv Manuf Tech 49(9):1185–1193

    Article  Google Scholar 

  4. 4.

    Zhong Y, Shirinzadeh B, Alici G, Smith J (2006) Soft tissue modelling through autowaves for surgery simulation. Med Biol Eng Comput 44(9):805–821

    Article  Google Scholar 

  5. 5.

    Gu GY, Zhu LM, Su CY, Fatikow S, Ding H (2015) Proxy-based sliding-mode tracking control of piezoelectric-actuated nanopositioning stages. IEEE/ASME Transactions on Mechatronics 20(4):1956–1965

    Article  Google Scholar 

  6. 6.

    Qin Y, Shirinzadeh B, Tian Y, Zhang D (2013) Design issues in a decoupled XY stage: Static and dynamics modeling, hysteresis compensation, and tracking control. Sensors and Actuators A: Physical 194:95–105

    Article  Google Scholar 

  7. 7.

    Zimmermann S, Tiemerding T, Fatikow S (2015) Automated robotic manipulation of individual colloidal particles using vision-based control. IEEE/ASME Transactions on Mechatronics 20(5):2031–2038

    Article  Google Scholar 

  8. 8.

    Tian Y, Shirinzadeh B, Zhang D (2009) A flexure-based mechanism and control methodology for ultra-precision turning operation. Precis Eng 33(2):160–166

    Article  Google Scholar 

  9. 9.

    Wang P, Xu Q (2017) Design of a flexure-based constant-force XY precision positioning stage. Mech Mach Theory 108 :1–13

    Article  Google Scholar 

  10. 10.

    Pinskier J, Shirinzadeh B (2019) Topology optimization of leaf flexures to maximize in-plane to out-of-plane compliance ratio. Precis Eng 55:397–407

    Article  Google Scholar 

  11. 11.

    Fung RF, Lin WC (2009) System identification of a novel 6-DOF precision positioning table. Sensors and Actuators A: Physical 150(2):286–295

    Article  Google Scholar 

  12. 12.

    Clark L, Shirinzadeh B, Bhagat U, Smith J, Zhong Y (2015) Development and control of a two DOF linear – angular precision positioning stage. Mechatronics 32:34–43

    Article  Google Scholar 

  13. 13.

    Boudaoud M, Haddab Y, Le Gorrec Y (2013) Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE/ASME Transactions on Mechatronics 18(3):1130–1139

    Article  Google Scholar 

  14. 14.

    López-Walle B, Gauthier M, Chaillet N (2008) Principle of a submerged freeze gripper for microassembly. IEEE Trans Robot 24(4):897–902

    Article  Google Scholar 

  15. 15.

    Lin CM, Fan CH, Lan CC (2009) A shape memory alloy actuated microgripper with wide handling ranges. In: IEEE/ASME International conference on advanced intelligent mechatronics

  16. 16.

    Tian Y, Shirinzadeh B, Zhang D, Liu X, Chetwynd D (2009) Design and forward kinematics of the compliant micro-manipulator with lever mechanisms. Precis Eng 33(4):466–475

    Article  Google Scholar 

  17. 17.

    Qi KQ, Xiang Y, Fang C, Zhang Y, Yu CS (2015) Analysis of the displacement amplification ratio of bridge-type mechanism. Mech Mach Theory 87:45–56

    Article  Google Scholar 

  18. 18.

    Somà A, Iamoni S, Voicu R, Müller R (2018) Design and experimental testing of an electro - thermal microgripper for cell manipulation. Microsyst Technol 24(2):1053–1060

    Article  Google Scholar 

  19. 19.

    Liang C, Wang F, Shi B, Huo Z, Zhou K, Tian Y, Zhang D (2018) Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sensors and Actuators A: Physical 269:227–237

    Article  Google Scholar 

  20. 20.

    Zubir MNM, Shirinzadeh B (2009) Development of a high precision flexure-based microgripper. Precis Eng 33(4):362– 370

    Article  Google Scholar 

  21. 21.

    Chen W, Zhang X, Fatikow S (2016) A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators. Rev Sci Instrum 87(11):1–11

    Article  Google Scholar 

  22. 22.

    Xing Q, Ge Y (2015) Parametric study of a novel asymmetric micro-gripper mechanism. J Adv Mech Des Syst Manuf 9(5):1–12

    MathSciNet  Article  Google Scholar 

  23. 23.

    Zhang D, Zhang Z, Gao Q, Xu D, Liu S (2015) Development of a monolithic compliant SPCA-driven micro-gripper. Mechatronics 25:37–43

    Article  Google Scholar 

  24. 24.

    Sun X, Chen W, Tian Y, Fatikow S, Zhou R, Zhang J (2013) A novel flexure-based microgripper with double amplification mechanisms for micro / nano manipulation. Rev Sci Instrum 84(8):1–10

    Article  Google Scholar 

  25. 25.

    Liang C, Wang F, Tian Y, Zhao X, Zhang H, Cui L, Zhang D, Ferreira P (2015) A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging. Rev Sci Instrum 86(4):1–10

    Article  Google Scholar 

  26. 26.

    Shi Q, Yu Z, Wang H, Sun T, Huang Q, Fukuda T (2018) Development of a highly compact microgripper capable of online calibration for multisized microobject manipulation. IEEE Trans Nanotechnol 17 (4):657–661

    Article  Google Scholar 

  27. 27.

    Wang F, Liang C, Tian Y, Zhao X, Zhang D (2016) Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation. IEEE/ASME Transactions on Mechatronics 21 (3):1262–1271

    Article  Google Scholar 

  28. 28.

    Chen W, Zhang X, Li H, Wei J, Fatikow S (2017) Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper. Mech Mach Theory 118:32–52

    Article  Google Scholar 

  29. 29.

    Choi KB, Lee JJ, Kim GH, Lim HJ, Kwon SG (2018) Amplification ratio analysis of a bridge-type mechanical amplification mechanism based on a fully compliant model. Mech Mach Theory 121:355–372

    Article  Google Scholar 

  30. 30.

    Zubir MNM, Shirinzadeh B, Tian Y (2009) Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation. Rev Sci Instrum 80(6):1–14

    Google Scholar 

  31. 31.

    Wang F, Liang C, Tian Y, Zhao X, Zhang D (2015) Design of a piezoelectric-actuated microgripper with a three-stage flexure-based amplification. IEEE/ASME Transactions on Mechatronics 20(5):2205–2213

    Article  Google Scholar 

  32. 32.

    Yang YL, Lou JQ, Wu GH, Wei YD, Fu L (2018) Design and position / force control of an S-shaped MFC microgripper. Sensors and Actuators A: Physical 282:63–78

    Article  Google Scholar 

  33. 33.

    Qin Y, Shirinzadeh B, Zhang D, Tian Y (2013) Compliance modeling and analysis of statically indeterminate symmetric flexure structures. Precis Eng 37(2):415–424

    Article  Google Scholar 

  34. 34.

    Koseki Y, Tanikawa T, Koyachi N, Arai T (2000) Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method. IEEE/RSJ International Conference on Intelligent Robots and Systems 1:786–792

    Google Scholar 

  35. 35.

    Li Y, Xu Q (2009) Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans Robot 25(03):645–657

    Article  Google Scholar 

  36. 36.

    Smith ST (2000) Flexure-elements of elastic mechanisms. CRC Press, Boca Raton

    Google Scholar 

  37. 37.

    Zubir MNM, Shirinzadeh B, Tian Y (2009) Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sensors and Actuators A: Physical 150(2):257– 266

    Article  Google Scholar 

  38. 38.

    Bhagat U, Shirinzadeh B, Clark L, Qin Y, Tian Y, Zhang D (2014) Experimental investigation of robust motion tracking control for a 2-DOF flexure-based mechanism. IEEE/ASME Transactions on Mechatronics 19(6):1737–1745

    Article  Google Scholar 

  39. 39.

    Qin Y, Shirinzadeh B, Tian Y, Zhang D, Bhagat U (2014) Design and computational optimization of a decoupled 2-DOF monolithic mechanism. IEEE/ASME Transactions on Mechatronics 19(3):872–881

    Article  Google Scholar 

  40. 40.

    Tang H, Li Y (2015) A new flexure-based Y𝜃 nanomanipulator with nanometer-scale resolution and millimeter-scale workspace. IEEE/ASME Transactions on Mechatronics 20 (3):1320– 1330

    Article  Google Scholar 

  41. 41.

    Feng F, Cui Y, Xue F, Wu L (2012) Design of a new piezo-electric micro-gripper based on flexible magnifying mechanism. Applied Mechanics and Materials 201-202:907–911

    Article  Google Scholar 

  42. 42.

    Yang YL, Wei YD, Lou JQ, Tian G, Zhao XW, Fu L (2015) A new piezo-driven microgripper based on the double-rocker mechanism. Smart Mater Struct 24(7):1–11

    Google Scholar 

Download references


This research is supported by the Australian Research Council (ARC) Discovery Projects, and ARC LIFE Projects.

Author information



Corresponding author

Correspondence to Tilok Kumar Das.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, T.K., Shirinzadeh, B., Ghafarian, M. et al. Characterization of a compact piezoelectric actuated microgripper based on double-stair bridge-type mechanism. J Micro-Bio Robot 16, 79–92 (2020).

Download citation


  • C ompliant mechanism
  • Piezoelectric actuator
  • Right-angle flexure
  • Microgripper