Skip to main content
Log in

Multimodal microscopy test standard for scanning microwave, electron, force and optical microscopy

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

We report on measurement results of a test standard suitable for different microscopic modalities. These findings were obtained by a multimodal hybrid microscope, which requires various calibration methods, also in terms of its further use as a tool in a nanorobotic environment. A Scanning Probe Microscopy (SPM)-Controller based on an FPGA (Field Programmable Gate Array) enables the submicrometer imaging for atomic force and microwave microscopic modalities. It is embedded in an open source software framework for nanorobotics and -automation and is described in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fukuda T, Arai F, Nakajima M (2013) Micro-Nanorobotic manipulation systems and their applications. Springer, Berlin Heidelberg, pp 1–44

    Google Scholar 

  2. Mick U, Eichhorn V, Wortmann T, Diederichs C, Fatikow S (2010) Combined nanorobotic AFM/SEM system as novel toolbox for automated hybrid analysis and manipulation of nanoscale objects. Proc. of Int Conf on Robotics and Automation, Anchorage, USA, p. 4088–4093, 3-8 May 2010

  3. Banerjee A, Gupta S (2013) Research in automated planning and control for micromanipulation. IEEE Trans Autom Sci Eng 10(3):485–495

    Article  Google Scholar 

  4. Michel B, Mizutani W, Schierle R, Jarosch A, Knop W, Benedickter H, Bächtold W, Rohrer H (1992) Scanning surface harmonic microscopy: scanning probe microscopy based on microwave field-induced harmonic generation. Rev Sci Instrum 63(9):4080–4085

    Article  Google Scholar 

  5. Imtiaz A, Wallis TM, Kabos P (2014) Near-field scanning microwave microscopy: an emerging research tool for nanoscale metrology. IEEE Microw Mag 15(1):52–64

    Article  Google Scholar 

  6. Anderson G (2013) Scanning microwave microscopy for nanoscale electrical characterization. Microscopy Today 21(06):32–36

    Article  Google Scholar 

  7. Fabiani S, Mencarelli D, Di Donato A, Monti T, Venanzoni G, Morini A, Rozzi T, Farina M (2011) Broadband scanning microwave microscopy investigation of graphene. Proc. of Int Microwave Symposium, Baltimore, USA, p. 1–4, 05-10 08 2011

  8. Wang F, Clément N, Ducatteau D, Troadec D, Tanbakuchi H, Legrand B, Dambrine G, Théron D (2014) Quantitative impedance characterization of sub-10 nm scale capacitors and tunnel junctions with an interferometric scanning microwave microscope. Nanotechnology 25(40):405703

    Article  Google Scholar 

  9. Azizi M, Sarkar N, Mansour RR (2013) Single-Chip CMOS-MEMS dual mode scanning microwave microscope. IEEE Trans Microw Theory Tech 61(12):4621–4629

    Article  Google Scholar 

  10. Haenssler O (2014) Integration of a scanning microwave microscope and a scanning Electron microscope. Proc. of Int Conf on Manipulation, Manufacturing and Measurement on the Nanoscale, Taipei, Taiwan, p. 39–43, 27-31 Oct. 2014

  11. Haenssler O, Kostopoulos A, Doundoulakis G, Aperathitis E, Fatikow S, Kiriakidis G (2017) Test standard for light, electron and microwave microscopy to enable robotic processes," Proc. of Int Conf on Manipulation, Automation and Robotics at Small Scales, Montréal, Canada, p. 1–5, 17-21 July 2017

  12. Huebner U, Morgenroth W, Boucher R, Meyer M, Mirand W, Buhr E, Ehret G, Dai G, Dziomba T, Hild R, Fries T (2007) A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques. Meas Sci Technol 18(2):422–429

    Article  Google Scholar 

  13. SPI Supplies, West Chester, PA, USA, "MRS-6 Geller Magnification Reference Standard," [Online]. Available: http://www.2spi.com/item/z02782/geller-mrs-6. [Accessed 28 8 2017]

  14. MC2 Technologies, Sainghin en Mélantois, France, "SMM Calibration Kit," [Online]. Available: http://www.mc2-technologies.com/smm-calibration-kit/. [Accessed 03 02 2017]

  15. Huber HP, Moertelmaier M, Wallis TM, Chiang CJ, Hochleitner M, Imtiaz A, Oh Y, Schilcher K, Dieudonne M, Smoliner J, Hinterdorfer P, Rosner SJ, Tanbakuchi H, Kabos P, Kienberger a F (2010) Calibrated nanoscale capacitance measurements using a scanning microwave microscope. Rev Sci Instrum 81(11):113701-9–113701-113701

    Article  Google Scholar 

  16. Hoffmann J, Wollensack M, Zeier M, Niegemann J, Huber H, Kienberger F (2012) A calibration algorithm for nearfield scanning microwave microscopes. Proc on 12th IEEE Conf on Nanotechnology, Birmingham, UK, p. 1–4

  17. Karbassi A, Ruf D, Bettermann AD, Paulson CA, van der Weide DW, Tanbakuchi H, Stancliff R (2008) Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement. Rev Sci Instrum 79(9):5

    Article  Google Scholar 

  18. IMEC, Leuven, Belgium, "Calibration standards and test samples," [Online]. Available: http://www2.imec.be/be_en/services-and-solutions/cams/products/calibration-standards-and-test-s.html. [Accessed 03 02 2017]

  19. Schweinböck T, Hommel S (2014) Quantitative scanning microwave microscopy: a calibration flow. Microelectron Reliab 54(9–10):2070–2074

    Article  Google Scholar 

  20. Gramse G, Kasper M, Fumagalli L, Gomila G, Hinterdorfer P, Kienberger F (2014) Calibrated complex impedance and permittivity measurements with scanning microwave microscopy. Nanotechnology 25(14):8

    Article  Google Scholar 

  21. Tiemerding T, Diederichs C, Stehno C, Fatikow S (2013) Comparison of different design methodologies of hardware-based image processing for automation in microrobotics. Proc. of Int Conf on Advanced Intelligent Mechatronics, Wollongong, Australia, p. 565–570, 9-12 July 2013

  22. Wieghaus MF, Tiemerding T, Haenssler O, Fatikow S (2016) Modularized SPM-controller based on an FPGA for combined AFM and SMM measurements. Proc. of Int Conf on Manipulation, Automation and Robotics at Small Scales, Paris, France, p. 1–6, 18-22 07 2016

  23. Diederichs C, Bartenwerfer M, Mikczinski M, Zimmermann S, Tiemerding T, Geldmann C, Nguyen H, Dahmen C, Fatikow D (2013) A rapid automation framework for applications on the micro- and nanoscale. in Proc. of the Australasian Conf. on Robotics and Automation (ACRA), Sydney, 2013

  24. Bradski G (November 2000) The Opencv library. DDJ 25:120, 122–120, 125

    Google Scholar 

  25. Tiemerding T, Zimmermann S, Fatikow S (2014) Robotic dual probe setup for reliable pick and place processing on the nanoscale using haptic devices. Proc. of Int Conf on Intelligent Robots and Systems, Chicago, USA, p. 892–897, 14-18 Sept. 2014

  26. Zimmermann S, Tiemerding T, Fatikow S, Wang W, Li T, Wang Y (2013) Automated mechanical characterization of 2D materials using SEM based visual servoing," Proc. of Int Conf on Manipulation, Manufacturing and Measurement on the Nanoscale,, Suzhou, China, p. 9–14, 26-30 Aug. 2013

Download references

Acknowledgements

This research was supported in part by Deutscher Akademischer Austauschdienst (DAAD, Germany) and Greek State Scholarships Foundation (IKY, Greece) project “CalSAS” and by the French-German Agence Nationale de la recherché - Deutsche Forschungsgemeinschaft project “VACSMM” (GZ: FA347/48-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf C. Haenssler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haenssler, O.C., Wieghaus, M.F., Kostopoulos, A. et al. Multimodal microscopy test standard for scanning microwave, electron, force and optical microscopy. J Micro-Bio Robot 14, 51–57 (2018). https://doi.org/10.1007/s12213-018-0108-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-018-0108-z

Keywords

Navigation