Functions and dys-functions of promyelocytic leukemia protein PML

  • Maurizio Previati
  • Sonia Missiroli
  • Mariasole Perrone
  • Natascia Caroccia
  • Federico Paliotto
  • Daniela Milani
  • Carlotta Giorgi
Current topics in Biology


The promyelocytic leukemia protein PML has been previously recognized as a critical and essential regulator of a broad number of cellular functions. At nuclear level PML forms the PML-nuclear bodies, where it can sequester and influence the post-translational modification of a wide number of proteins, ultimately affecting their regulative role in DNA transcription. In such a way, PML acts as a key player in strategic cellular activities like as the antiviral defense, in the regulation of the cell cycle, in senescence and programmed cell death. In addition, PML can redistribute also at cytoplasmic level, where it associates to the endoplasmic reticulum or is recruited to mitochondrial-associated membranes. Here it can interact with key cellular proteins like as p53 and influence cell metabolism, mitochondrial calcium upload and autophagy. Altogether, all these findings depict PML as a protein able to exert a widespread action mainly focused on pro-apoptotic and cytostatic activities. Anyway, presence of “Janus-like” pro-tumoral behaviors have been reported, prompting for further investigation to better dissect and highlight all the possible roles that PML can assume in the different physiological or pathological environments. In this review, we discuss the role of PML in multiple cellular functions and pathologic scenarios and summarize the players that control PML protein both at nuclear and at cytoplasmic level.


PML functions Antiviral response Senescence Cell death Metabolism Cancer 



Fundings were provided by local funds from the University of Ferrara, the Italian Association for Cancer Research (AIRC: IG-19803), the Italian Ministry of Health, and by a Fondazione Cariplo grant.


  1. Bellodi C, Kindle K, Bernassola F, Cossarizza A, Dinsdale D, Melino G, Heery D, Salomoni P (2006) A cytoplasmic PML mutant inhibits p53 function. Cell Cycle 5(22):2688–2692CrossRefGoogle Scholar
  2. Bernardi R, Pandolfi PP (2003) Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 22(56):9048–9057CrossRefGoogle Scholar
  3. Buczek ME, Miles AK, Green W, Johnson C, Boocock DJ, Pockley AG, Rees RC, Hulman G, van Schalkwyk G, Parkinson R, Hulman J, Powe DG, Regad T (2016) Cytoplasmic PML promotes TGF-beta-associated epithelial-mesenchymal transition and invasion in prostate cancer. Oncogene 35(26):3465–3475CrossRefGoogle Scholar
  4. Carracedo A, Weiss D, Leliaert AK, Bhasin M, de Boer VC, Laurent G, Adams AC, Sundvall M, Song SJ, Ito K, Finley LS, Egia A, Libermann T, Gerhart-Hines Z, Puigserver P, Haigis MC, Maratos-Flier E, Richardson AL, Schafer ZT, Pandolfi PP (2012) A metabolic prosurvival role for PML in breast cancer. J Clin Invest 122(9):3088–3100CrossRefGoogle Scholar
  5. Ching RW, Ahmed K, Boutros PC, Penn LZ, Bazett-Jones DP (2013) Identifying gene locus associations with promyelocytic leukemia nuclear bodies using immuno-TRAP. J Cell Biol 201(2):325–335CrossRefGoogle Scholar
  6. Chuang YS, Huang WH, Park SW, Persaud SD, Hung CH, Ho PC, Wei LN (2011) Promyelocytic leukemia protein in retinoic acid-induced chromatin remodeling of Oct4 gene promoter. Stem Cells 29(4):660–669CrossRefGoogle Scholar
  7. Danese A, Patergnani S, Bonora M, Wieckowski MR, Previati M, Giorgi C, Pinton P (2017) Calcium regulates cell death in cancer: roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim Biophys Acta 1858(8):615–627CrossRefGoogle Scholar
  8. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991) The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66(4):675–684CrossRefGoogle Scholar
  9. Dellaire G, Eskiw CH, Dehghani H, Ching RW, Bazett-Jones DP (2006) Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. J Cell Sci 119(Pt 6):1034–1042CrossRefGoogle Scholar
  10. El Bougrini J, Dianoux L, Chelbi-Alix MK (2011) PML positively regulates interferon gamma signaling. Biochimie 93(3):389–398CrossRefGoogle Scholar
  11. El McHichi B, Regad T, Maroui MA, Rodriguez MS, Aminev A, Gerbaud S, Escriou N, Dianoux L, Chelbi-Alix MK (2010) SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 84(22):11634–11645CrossRefGoogle Scholar
  12. Giorgi C, Ito K, Lin HK, Santangelo C, Wieckowski MR, Lebiedzinska M, Bononi A, Bonora M, Duszynski J, Bernardi R, Rizzuto R, Tacchetti C, Pinton P, Pandolfi PP (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330(6008):1247–1251CrossRefGoogle Scholar
  13. Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P (2015) Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 22(12):995–1019CrossRefGoogle Scholar
  14. Goddard AD, Borrow J, Freemont PS, Solomon E (1991) Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254(5036):1371–1374CrossRefGoogle Scholar
  15. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ (1997) Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89(2):376–387Google Scholar
  16. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, Verbel DA, Cordon-Cardo C, Pandolfi PP (2004) Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96(4):269–279CrossRefGoogle Scholar
  17. Hadjimichael C, Chanoumidou K, Nikolaou C, Klonizakis A, Theodosi GI, Makatounakis T, Papamatheakis J, Kretsovali A (2017) Promyelocytic leukemia protein is an essential regulator of stem cell pluripotency and somatic cell reprogramming. Stem Cell Rep 8(5):1366–1378CrossRefGoogle Scholar
  18. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP (1998) Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 18(2):126–135CrossRefGoogle Scholar
  19. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078CrossRefGoogle Scholar
  20. Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, Schafer ZT, Evans RM, Suda T, Lee CH, Pandolfi PP (2012) A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18(9):1350–1358CrossRefGoogle Scholar
  21. Jensen K, Shiels C, Freemont PS (2001) PML protein isoforms and the RBCC/TRIM motif. Oncogene 20(49):7223–7233CrossRefGoogle Scholar
  22. Jul-Larsen A, Grudic A, Bjerkvig R, Boe SO (2010) Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein. BMC Mol Biol 11:89CrossRefGoogle Scholar
  23. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VV, Dmitrovsky E, Evans RM (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66(4):663–674CrossRefGoogle Scholar
  24. Kentsis A, Dwyer EC, Perez JM, Sharma M, Chen A, Pan ZQ, Borden KL (2001) The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. J Mol Biol 312(4):609–623CrossRefGoogle Scholar
  25. Khelifi AF, D’Alcontres MS, Salomoni P (2005) Daxx is required for stress-induced cell death and JNK activation. Cell Death Differ 12(7):724–733CrossRefGoogle Scholar
  26. Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C et al (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 13(5):1073–1083CrossRefGoogle Scholar
  27. Kuchay S, Giorgi C, Simoneschi D, Pagan J, Missiroli S, Saraf A, Florens L, Washburn MP, Collazo-Lorduy A, Castillo-Martin M, Cordon-Cardo C, Sebti SM, Pinton P, Pagano M (2017) PTEN counteracts FBXL2 to promote IP3R3- and Ca(2+)-mediated apoptosis limiting tumour growth. Nature 546(7659):554–558Google Scholar
  28. Kuwayama K, Matsuzaki K, Mizobuchi Y, Mure H, Kitazato KT, Kageji T, Nakao M, Nagahiro S (2009) Promyelocytic leukemia protein induces apoptosis due to caspase-8 activation via the repression of NFkappaB activation in glioblastoma. Neuro Oncol 11(2):132–141CrossRefGoogle Scholar
  29. Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2(5):a000661CrossRefGoogle Scholar
  30. Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21(10):2383–2396CrossRefGoogle Scholar
  31. Li T, Santockyte R, Shen RF, Tekle E, Wang G, Yang DC, Chock PB (2006) Expression of SUMO-2/3 induced senescence through p53- and pRB-mediated pathways. J Biol Chem 281(47):36221–36227CrossRefGoogle Scholar
  32. Li W, Rich T, Watson CJ (2009) PML: a tumor suppressor that regulates cell fate in mammary gland. Cell Cycle 8(17):2711–2717CrossRefGoogle Scholar
  33. Liang J, Wan M, Zhang Y, Gu P, Xin H, Jung SY, Qin J, Wong J, Cooney AJ, Liu D, Songyang Z (2008) Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol 10(6):731–739CrossRefGoogle Scholar
  34. Lin HK, Bergmann S, Pandolfi PP (2004) Cytoplasmic PML function in TGF-beta signalling. Nature 431(7005):205–211CrossRefGoogle Scholar
  35. Lunardi A, Gaboli M, Giorgio M, Rivi R, Bygrave A, Antoniou M, Drabek D, Dzierzak E, Fagioli M, Salmena L, Botto M, Cordon-Cardo C, Luzzatto L, Pelicci PG, Grosveld F, Pandolfi PP (2011) A Role for PML in Innate Immunity. Genes Cancer 2(1):10–19CrossRefGoogle Scholar
  36. Marchi S, Bittremieux M, Missiroli S, Morganti C, Patergnani S, Sbano L, Rimessi A, Kerkhofs M, Parys JB, Bultynck G, Giorgi C, Pinton P (2017) Endoplasmic reticulum-mitochondria communication through Ca(2+) signaling: the importance of mitochondria-associated membranes (MAMs). Adv Exp Med Biol 997:49–67CrossRefGoogle Scholar
  37. Maroui MA, Pampin M, Chelbi-Alix MK (2011) Promyelocytic leukemia isoform IV confers resistance to encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies. J Virol 85(24):13164–13173CrossRefGoogle Scholar
  38. McNally BA, Trgovcich J, Maul GG, Liu Y, Zheng P (2008) A role for cytoplasmic PML in cellular resistance to viral infection. PLoS ONE 3(5):e2277CrossRefGoogle Scholar
  39. Missiroli S, Bonora M, Patergnani S, Poletti F, Perrone M, Gafa R, Magri E, Raimondi A, Lanza G, Tacchetti C, Kroemer G, Pandolfi PP, Pinton P, Giorgi C (2016) PML at mitochondria-associated membranes is critical for the repression of autophagy and cancer development. Cell Rep 16(9):2415–2427CrossRefGoogle Scholar
  40. Missiroli S, Danese A, Iannitti T, Patergnani S, Perrone M, Previati M, Giorgi C, Pinton P (2017) Endoplasmic reticulum-mitochondria Ca(2+) crosstalk in the control of the tumor cell fate. Biochim Biophys Acta 1864(6):858–864CrossRefGoogle Scholar
  41. Pampin M, Simonin Y, Blondel B, Percherancier Y, Chelbi-Alix MK (2006) Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol 80(17):8582–8592CrossRefGoogle Scholar
  42. Pan D, Zhu Q, Luo K (2009) SnoN functions as a tumour suppressor by inducing premature senescence. EMBO J 28(22):3500–3513CrossRefGoogle Scholar
  43. Pedriali G, Rimessi A, Sbano L, Giorgi C, Wieckowski MR, Previati M, Pinton P (2017) Regulation of endoplasmic reticulum-mitochondria Ca(2+) transfer and its importance for anti-cancer therapies. Front Oncol 7:180CrossRefGoogle Scholar
  44. Pinton P, Giorgi C, Pandolfi PP (2011) The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ 18(9):1450–1456CrossRefGoogle Scholar
  45. Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64CrossRefGoogle Scholar
  46. Regad T, Bellodi C, Nicotera P, Salomoni P (2009) The tumor suppressor Pml regulates cell fate in the developing neocortex. Nat Neurosci 12(2):132–140CrossRefGoogle Scholar
  47. Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20(9):2140–2151CrossRefGoogle Scholar
  48. Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696CrossRefGoogle Scholar
  49. Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de The H, Lallemand-Breitenbach V (2014) Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol 204(6):931–945CrossRefGoogle Scholar
  50. Salomoni P, Khelifi AF (2006) Daxx: death or survival protein? Trends Cell Biol 16(2):97–104CrossRefGoogle Scholar
  51. Scherer M, Stamminger T (2016) Emerging role of PML nuclear bodies in innate immune signaling. J Virol 90(13):5850–5854CrossRefGoogle Scholar
  52. Schmitz ML, Grishina I (2012) Regulation of the tumor suppressor PML by sequential post-translational modifications. Front Oncol 2:204CrossRefGoogle Scholar
  53. Seo SR, Ferrand N, Faresse N, Prunier C, Abecassis L, Pessah M, Bourgeade MF, Atfi A (2006) Nuclear retention of the tumor suppressor cPML by the homeodomain protein TGIF restricts TGF-beta signaling. Mol Cell 23(4):547–559CrossRefGoogle Scholar
  54. Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24(3):331–339CrossRefGoogle Scholar
  55. Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390CrossRefGoogle Scholar
  56. Song MS, Song SJ, Kim SY, Oh HJ, Lim DS (2008) The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J 27(13):1863–1874CrossRefGoogle Scholar
  57. Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH (2011) MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle 10(18):3176–3188CrossRefGoogle Scholar
  58. Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS, Yang X (2006) Critical role for Daxx in regulating Mdm2. Nat Cell Biol 8(8):855–862CrossRefGoogle Scholar
  59. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441(7092):523–527CrossRefGoogle Scholar
  60. Turelli P, Doucas V, Craig E, Mangeat B, Klages N, Evans R, Kalpana G, Trono D (2001) Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol Cell 7(6):1245–1254CrossRefGoogle Scholar
  61. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP (1998) PML is essential for multiple apoptotic pathways. Nat Genet 20(3):266–272CrossRefGoogle Scholar
  62. Weidtkamp-Peters S, Lenser T, Negorev D, Gerstner N, Hofmann TG, Schwanitz G, Hoischen C, Maul G, Dittrich P, Hemmerich P (2008) Dynamics of component exchange at PML nuclear bodies. J Cell Sci 121(Pt 16):2731–2743CrossRefGoogle Scholar
  63. Wu WS, Xu ZX, Hittelman WN, Salomoni P, Pandolfi PP, Chang KS (2003) Promyelocytic leukemia protein sensitizes tumor necrosis factor alpha-induced apoptosis by inhibiting the NF-kappaB survival pathway. J Biol Chem 278(14):12294–12304CrossRefGoogle Scholar
  64. Xu P, Roizman B (2017) The SP100 component of ND10 enhances accumulation of PML and suppresses replication and the assembly of HSV replication compartments. Proc Natl Acad Sci USA 114(19):E3823–E3829CrossRefGoogle Scholar
  65. Yang S, Kuo C, Bisi JE, Kim MK (2002) PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4(11):865–870CrossRefGoogle Scholar
  66. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482CrossRefGoogle Scholar
  67. Zhou W, Cheng L, Shi Y, Ke SQ, Huang Z, Fang X, Chu CW, Xie Q, Bian XW, Rich JN, Bao S (2015) Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget 6(35):37300–37315Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Section of Human Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
  2. 2.Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly

Personalised recommendations