Skip to main content
Log in

Theoria Generationis: the ancient roots of modern developmental biology

  • Review
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

The debate between to be and to become that opposed Parmenides and Heraclitus became converted, over the subsequent two millennia, into the dilemmas between preformation and epigenesis, and between immanence and transcendence. Aristotle, enunciating his Theoria generationis, moved the controversy from the realm of Metaphysics to Physics and can even be glimpsed trespassing into Biology in Harvey’s treatises De Motu Cordis and Exercitatione de Generatione Animalium which introduced the concept of ovism. In the same period, the spermatozoon (animalculum) was described, and ovism and animaculism became counterparts. The two theories could be read on the background of preformation or epigenesis. With the Enlightenment, the dispute over the processes of development was exposed to Cartesian rationalism and subjected to severe experimentation. Comte’s positivism led to the search for the material first causes of development, according to the laws of Physics and Chemistry, whereas Roux’s Entwicklungsmechanick ruled developmental biology during the nineteenth century until the middle of the last century when Crick and Watson published their research, finally resolving the millenary conflict between preformation and epigenesis in molecular and genetics terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See the Italian edition of the complete works of Lazzaro Spallanzani, edited by Pericle Di Pietro, volume II of the Letters (Correspondence with Charles Bonnet) Modena 1984 Mucchi Ed.

References

  • Boveri T (1902) Ueber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh Phys Med 4:67–90

    Google Scholar 

  • Boveri T, O’Grady M (1903) Ueber Mitosen bei enseitiger Chromosomenbindung. Jena Z Med Naturwiss 37:401–446

    Google Scholar 

  • Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Nat Acad Sci 38(5):455–463

    Article  CAS  Google Scholar 

  • Briggs R, King TJ (1953) Factors affecting the transplant ability of nuclei of frog embryonic cells. J Exp Zool 22:485–505

    Article  Google Scholar 

  • Buffon G (1749) Histoire naturelle, générale et particulière. Tome II Histoire générale des animaux, Paris

  • Colombo R (1559) De re Anatomica. Venetiis

  • Crik FH, Watson JD (1953) Molecular structure of nucleic acid. Nature 171:43–56

    Article  Google Scholar 

  • Darwin CR (1868) The variation of animals and plants under domestication. John Murray, London

    Google Scholar 

  • Darwin CR (1871) Pangenesis. Nature 3:369–378

    Article  Google Scholar 

  • De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7:296–302

    Article  Google Scholar 

  • Diderot D, d'Alembert JB (1751–1772) Encyclopédie, ou Dictionnaire raisonné des Sciences, des Artes et des Métiers, pour une Société de gens de lettres. Paris

  • Dobzhansky T (1937) Genetics and origin of species. Columbia University Press, New York

    Google Scholar 

  • Fabrizio d'Acquapendente (1603) De Venarum Ostiolis. Padua

  • Flemming W (1879) Beiträge zur Kenntnis die zelle und ihrer Lebenscheinungen. Tell II Arch Mikr Anat 18:151–258

    Article  Google Scholar 

  • Galilei G (1632) Dialogo sopra i due massimi sistemi del Mondo, Tolemaico e Copernicano. Firenze

  • Goodman CS, Coughlin BC (2000) The evolution of EVO-DEVO biology. PNAS 97:4424–4425

    Article  CAS  Google Scholar 

  • Gurdon JB, Byrne JA (2003) The first half-century of nuclear transplantation. PNAS 100:8048–8052

    Article  CAS  Google Scholar 

  • Harvey W (1628) Exercitatio Anatomica de motu cordis et sanguinis animalium, London

  • Harvey W (1639) Exercitationes de generatione animalium. London

  • Hertwig O (1876) Lehrbuch der Entwicklungsgeschichte. Jena

  • Huxley J (1942) Evolution: the modern Synthesis. Allen and Unwin, London

    Google Scholar 

  • Malpighi M (1661) De pulmonibus observationes anatomicae. Bonomiae

  • Mayr E (1942) Systematics and the Origin of Species from the viewpoint of a zoologist. Columbia UP New York

  • Montalenti G (1983) L’evoluzione del concetto di gene. In: La vita e la sua storia. Scientia, Milano

  • Morgan TH, Sturtevant AH, Müller HT, Bridges CB (1915) The mechanism of Mendelian heredity. NewYork

  • Mueller GB, Newman SA (2005) Evolutionary innovation and morphological novelty. J Exp Zool 304B:485–486

    Article  Google Scholar 

  • Nägeli CW (1884) Mechanisch-physiologische theorie der Abstammungslehere. Leipzig

  • Russo L (1996) La rivoluzione dimenticata. Feltrinelli, Milano

    Google Scholar 

  • Schelling F (1799) Erster Entwurf eines Systems der Naturphilosophie

  • Schelling F (1804) System der gesamten Philosophie und der Naturphilosophie insbesondere

  • Severino MA (1645) Zootomia Democritaea, idest anatome generalis totius animantium opificiis, Norimberga

  • Simpson GG (1944) Tempo and mode in evolution. Columbia UP, New York

    Google Scholar 

  • Spallanzani L (1765) Saggio di osservazioni microscopiche concernenti il sistema della generazione de’ Signori di Needham e Buffon. Bartolomeo Soliani, Modena

  • Spallanzani L (1776) Opuscoli di Fisica Animale e Vegetabile. In: Società tipografica. Modena

  • Spallanzani L (1780) Dissertazione sopra la fecondazione artificiale ottenuta in alcuni animali

  • Strasburger E (1878) Ueber ein zu Demonstrationen geeignetes Zellteilungs-object. Sitzungsberict Med Natur Ges Jena 18:93–112

    Google Scholar 

  • Sutton WS (1902a) On the morphology of the chromosome group in Brachystola magna. Biol Bull 4:24–39

    Article  Google Scholar 

  • Sutton WS (1902b) The chromosomes in heredity. Biol Bull 4:231–251

    Article  Google Scholar 

  • Van Beneden E (1883) Recherches sur la Maturation de l’œuf la Fécondation. Ascris megalogephala. Arch Biol 4:265–638

    Google Scholar 

  • Van Beneden E, Chalin J (1884) La spermatogenèse chez Ascaris megalocephal. Bull Acad Royale Sci Bruxelles 7:312–324

  • Vesalio A (1543) De humani corporis fabrica. Basilea

  • von Baer CE (1827) De ovi mammalium et hominis genesi. Leipzig

  • Watson JD, Crik FH (1953) Genetical implication of the structure of the deossiribonucleic acid. Nature 171:964–967

    Article  CAS  Google Scholar 

  • Wilson EB (1892) The cell lineage of Nereis. A contribution to the cytogeny of the Anellid body. J Morphol 6:361–480

    Article  Google Scholar 

  • Wilson EB (1896) The cell in the development and inheritance. Columbia University Biological Series, Macmillan Co., London

Download references

Acknowledgements

The author wishes to thank his colleagues Carlo Redi and Manuela Monti for the suggestions and criticisms, and Rachel Stenner for the English language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Capanna.

Additional information

Opening lecture held on June 12, 2017 at the 63rd Meeting of the Italian Embryology Group (G.E.I.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capanna, E. Theoria Generationis: the ancient roots of modern developmental biology. Rend. Fis. Acc. Lincei 29, 1–12 (2018). https://doi.org/10.1007/s12210-018-0674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-018-0674-y

Keywords

Navigation