Theoria Generationis: the ancient roots of modern developmental biology

Review
  • 10 Downloads

Abstract

The debate between to be and to become that opposed Parmenides and Heraclitus became converted, over the subsequent two millennia, into the dilemmas between preformation and epigenesis, and between immanence and transcendence. Aristotle, enunciating his Theoria generationis, moved the controversy from the realm of Metaphysics to Physics and can even be glimpsed trespassing into Biology in Harvey’s treatises De Motu Cordis and Exercitatione de Generatione Animalium which introduced the concept of ovism. In the same period, the spermatozoon (animalculum) was described, and ovism and animaculism became counterparts. The two theories could be read on the background of preformation or epigenesis. With the Enlightenment, the dispute over the processes of development was exposed to Cartesian rationalism and subjected to severe experimentation. Comte’s positivism led to the search for the material first causes of development, according to the laws of Physics and Chemistry, whereas Roux’s Entwicklungsmechanick ruled developmental biology during the nineteenth century until the middle of the last century when Crick and Watson published their research, finally resolving the millenary conflict between preformation and epigenesis in molecular and genetics terms.

Keywords

History of sciences Developmental biology Cytogenetics Molecular biology 

Notes

Acknowledgements

The author wishes to thank his colleagues Carlo Redi and Manuela Monti for the suggestions and criticisms, and Rachel Stenner for the English language revision.

References

  1. Boveri T (1902) Ueber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh Phys Med 4:67–90Google Scholar
  2. Boveri T, O’Grady M (1903) Ueber Mitosen bei enseitiger Chromosomenbindung. Jena Z Med Naturwiss 37:401–446Google Scholar
  3. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Nat Acad Sci 38(5):455–463CrossRefGoogle Scholar
  4. Briggs R, King TJ (1953) Factors affecting the transplant ability of nuclei of frog embryonic cells. J Exp Zool 22:485–505CrossRefGoogle Scholar
  5. Buffon G (1749) Histoire naturelle, générale et particulière. Tome II Histoire générale des animaux, ParisGoogle Scholar
  6. Colombo R (1559) De re Anatomica. VenetiisGoogle Scholar
  7. Crik FH, Watson JD (1953) Molecular structure of nucleic acid. Nature 171:43–56CrossRefGoogle Scholar
  8. Darwin CR (1868) The variation of animals and plants under domestication. John Murray, LondonGoogle Scholar
  9. Darwin CR (1871) Pangenesis. Nature 3:369–378CrossRefGoogle Scholar
  10. De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7:296–302CrossRefGoogle Scholar
  11. Diderot D, d'Alembert JB (1751–1772) Encyclopédie, ou Dictionnaire raisonné des Sciences, des Artes et des Métiers, pour une Société de gens de lettres. ParisGoogle Scholar
  12. Dobzhansky T (1937) Genetics and origin of species. Columbia University Press, New YorkGoogle Scholar
  13. Fabrizio d'Acquapendente (1603) De Venarum Ostiolis. PaduaGoogle Scholar
  14. Flemming W (1879) Beiträge zur Kenntnis die zelle und ihrer Lebenscheinungen. Tell II Arch Mikr Anat 18:151–258CrossRefGoogle Scholar
  15. Galilei G (1632) Dialogo sopra i due massimi sistemi del Mondo, Tolemaico e Copernicano. FirenzeGoogle Scholar
  16. Goodman CS, Coughlin BC (2000) The evolution of EVO-DEVO biology. PNAS 97:4424–4425CrossRefGoogle Scholar
  17. Gurdon JB, Byrne JA (2003) The first half-century of nuclear transplantation. PNAS 100:8048–8052CrossRefGoogle Scholar
  18. Harvey W (1628) Exercitatio Anatomica de motu cordis et sanguinis animalium, LondonGoogle Scholar
  19. Harvey W (1639) Exercitationes de generatione animalium. LondonGoogle Scholar
  20. Hertwig O (1876) Lehrbuch der Entwicklungsgeschichte. JenaGoogle Scholar
  21. Huxley J (1942) Evolution: the modern Synthesis. Allen and Unwin, LondonGoogle Scholar
  22. Malpighi M (1661) De pulmonibus observationes anatomicae. BonomiaeGoogle Scholar
  23. Mayr E (1942) Systematics and the Origin of Species from the viewpoint of a zoologist. Columbia UP New YorkGoogle Scholar
  24. Montalenti G (1983) L’evoluzione del concetto di gene. In: La vita e la sua storia. Scientia, MilanoGoogle Scholar
  25. Morgan TH, Sturtevant AH, Müller HT, Bridges CB (1915) The mechanism of Mendelian heredity. NewYorkGoogle Scholar
  26. Mueller GB, Newman SA (2005) Evolutionary innovation and morphological novelty. J Exp Zool 304B:485–486CrossRefGoogle Scholar
  27. Nägeli CW (1884) Mechanisch-physiologische theorie der Abstammungslehere. LeipzigGoogle Scholar
  28. Russo L (1996) La rivoluzione dimenticata. Feltrinelli, MilanoGoogle Scholar
  29. Schelling F (1799) Erster Entwurf eines Systems der NaturphilosophieGoogle Scholar
  30. Schelling F (1804) System der gesamten Philosophie und der Naturphilosophie insbesondereGoogle Scholar
  31. Severino MA (1645) Zootomia Democritaea, idest anatome generalis totius animantium opificiis, NorimbergaGoogle Scholar
  32. Simpson GG (1944) Tempo and mode in evolution. Columbia UP, New YorkGoogle Scholar
  33. Spallanzani L (1765) Saggio di osservazioni microscopiche concernenti il sistema della generazione de’ Signori di Needham e Buffon. Bartolomeo Soliani, ModenaGoogle Scholar
  34. Spallanzani L (1776) Opuscoli di Fisica Animale e Vegetabile. In: Società tipografica. ModenaGoogle Scholar
  35. Spallanzani L (1780) Dissertazione sopra la fecondazione artificiale ottenuta in alcuni animaliGoogle Scholar
  36. Strasburger E (1878) Ueber ein zu Demonstrationen geeignetes Zellteilungs-object. Sitzungsberict Med Natur Ges Jena 18:93–112Google Scholar
  37. Sutton WS (1902a) On the morphology of the chromosome group in Brachystola magna. Biol Bull 4:24–39CrossRefGoogle Scholar
  38. Sutton WS (1902b) The chromosomes in heredity. Biol Bull 4:231–251CrossRefGoogle Scholar
  39. Van Beneden E (1883) Recherches sur la Maturation de l’œuf la Fécondation. Ascris megalogephala. Arch Biol 4:265–638Google Scholar
  40. Van Beneden E, Chalin J (1884) La spermatogenèse chez Ascaris megalocephal. Bull Acad Royale Sci Bruxelles 7:312–324Google Scholar
  41. Vesalio A (1543) De humani corporis fabrica. BasileaGoogle Scholar
  42. von Baer CE (1827) De ovi mammalium et hominis genesi. LeipzigGoogle Scholar
  43. Watson JD, Crik FH (1953) Genetical implication of the structure of the deossiribonucleic acid. Nature 171:964–967CrossRefGoogle Scholar
  44. Wilson EB (1892) The cell lineage of Nereis. A contribution to the cytogeny of the Anellid body. J Morphol 6:361–480CrossRefGoogle Scholar
  45. Wilson EB (1896) The cell in the development and inheritance. Columbia University Biological Series, Macmillan Co., LondonGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Department of Biology and Biotechnology “Charles Darwin”Sapienza University of RomeRomeItaly
  2. 2.Accademia Nazionale dei LinceiRomeItaly

Personalised recommendations