Skip to main content
Log in

Ultraviolet and infrared spectroscopy of neutral and ionic non-covalent diastereomeric complexes in the gas phase

  • Chirality in Chemistry and Biophysics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Non-covalent intermolecular interactions responsible for chiral discrimination have been investigated in the gas phase both in neutral and ionic complexes. Mass-selected resonant two-photon ionization (R2PI) as well as infrared depleted R2PI (IR–R2PI) techniques have been applied to investigate the role of fluorine substitution in the chiral recognition process between (R)-1-phenyl 1-ethanol (ER), (S)-1-(4-fluorophenyl)-ethanol (pFES), (R)-1-phenyl-2,2,2-trifluoroethanol (FER) and the two enantiomers of butan-2-ol (BR/S), generated in a supersonic molecular beam. The results have been interpreted with the aid of theoretical predictions at the D-B3LYP/6-31G** level of theory. The diastereomeric complexes of ER and pFES with R- and S-butan-2-ol are structurally similar, and dispersive interactions between the aliphatic chain of the alcohol and the π system of the chromophore as well repulsive interactions are mainly responsible for chiral recognition. FER forms, predominantly with S-butan-2-ol, also stable complexes in which the alcohol is oriented away from the aromatic ring. The ionic complexes between pure enantiomers of the bis (diamido)-bridged basket resorcin[4]arene and cytarabine are generated in the gas phase by electrospray ionization and investigated by IRMPD. The proton-bound diastereomers show clearly different IRMPD spectra which, in light of ONIOM (B3LYP/6-31(d):UFF) calculations, are consistent with the occurrence of several isomeric structures, in which the N(3)-protonated guest is either accommodated inside the host cavity or outside it. The spectral differences are attributed to the effects of the intramolecular hydrogen bonding between the C(2′)_OH group and the aglycone oxygen atom of the nucleosidic guest upon repulsive interactions between the same oxygen atom and the aromatic rings of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkorta I, Picazo O, Elguero J (2006) Curr Org Chem 10:695–714

    Article  CAS  Google Scholar 

  • Berova N, Nakanishi K, Woody RW (2000) Circular dichroism. Principle and applications. Wiley, New York

    Google Scholar 

  • Brutschy BJ (1990) Phys Chem 94:8637–8647

    Article  CAS  Google Scholar 

  • Catone D, Giardini Guidoni A, Paladini A, Piccirillo S, Rondino F, Satta M, Scuderi D, Speranza M (2004) Angew Chem Int Ed 43(14):1868–1871

    Google Scholar 

  • Dapprich S, Komromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct 474–515:1–21

    Google Scholar 

  • Dearden V, Fang N (2010) In Chiral Recognition in the Gas Phase. In: Zehnacker A (ed) CRC Press, Taylor & Francis, Boca Raton, FL, USA, pp 133–142

  • Filippi A, Giardini A, Piccirillo S, Speranza M (2000) Int J Mass Spectrom 198:137–163

    Article  CAS  Google Scholar 

  • Filippi A, Fraschetti C, Piccirillo S, Rondino F, Botta B, D’Acquarica I, Calcaterra A, Speranza M (2012) Chem Eur J 18(27):8320–8328

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle S, Pople JA (2003) Gaussian 03, Gaussian, Inc., Pittsburgh, PA. High Performance Computational Chemistry Group, NWChem, A computational chemistry package for parallel computers, Version 5.0.1 (2001), Pacific Northwest National Laboratory, Richland, Washington 99352, USA

  • Giardini Guidoni A, Piccirillo S, Scuderi D, Satta M, Di Palma TM, Speranza M, Filippo A, Paladini A (2001) Chirality 13:727–730

    Google Scholar 

  • Giardini A, Rondino F, Paladini A, Speranza M, Satta M, Piccirillo S (2009) J Phys Chem A 113(52):15127–15135

    Article  CAS  Google Scholar 

  • Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  • Humbel S, Sieber S, Morokuma K (1996) J Chem Phys 105:1959–1967

    Article  CAS  Google Scholar 

  • King Adrian K, Howard Brian J (2009) J Mol Spectrosc 257:205–212

    Article  CAS  Google Scholar 

  • Latini A, Toja D, Giardini-Guidoni A, Piccirillo S, Speranza M (1999) Angew Chem 111:838; Angew Chem Int Ed 38:815

  • Latini A, Satta M, Giardini Guidoni A, Piccirillo S, Speranza M (2000) Chem A Eur J 6:1042–1049

    Google Scholar 

  • Le Barbu K, Brenner V, Millie Ph, Lahmani F, Zehnacker-Rentien A (1998) J Phys Chem A 102:128–137

    Article  Google Scholar 

  • Le Barbu K, Zehnacker A, Lahamani F, Mons M, Piuzzi, Dimicoli I (2001) Chirality 13:715–721

    Article  Google Scholar 

  • Lipkowitz KB, Raghothama S, Yang J (1992) J Am Chem Soc 114:1554

    Article  CAS  Google Scholar 

  • Maitre P, Lemaire J, Scuderi D (2008) Phys Scr 78(058111) 058111/1–058111/6

  • Maseras F, Morokuma K (1995) J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  • Mons M, Piuzzi F, Dimicoli I, Zehnacker A, Lahmani F (2000) Phys Chem Chem Phys 2:5065–5070

    Article  CAS  Google Scholar 

  • Piccirillo S, Coreno M, Giardini-Guidoni A, Pizzela G, Snels M, Teghil R (1993) J Mol Struct 293:197

    Article  CAS  Google Scholar 

  • Portmann S, Inauen A, Luthi HP, Leutwyler S (2000) J Chem Phys 113:9577–9585

    Article  CAS  Google Scholar 

  • Pu L (2004) Chem Rev 104:1687

    Article  CAS  Google Scholar 

  • Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  • Reimann B, Buchhold K, Barth HD, Brutschy B, Tarakeshwar P, Kim KS (2002) J Chem Phys 117:1

    Article  Google Scholar 

  • Riehn C, Lahmann C, Wassermann B, Brutschy B (1992) Chem Phys Lett 197:443–450

    Article  CAS  Google Scholar 

  • Robertson EG, Simons Phys JP (2001) Chem Chem Phys 3:1–18

    Article  CAS  Google Scholar 

  • Rondino F, Paladini A, Ciavardini A, Casavola A, Catone D, Satta ME, Barth HD, Giardini A, Speranza M, Piccirillo S (2011) P.C.C.P 13:818–824

    Google Scholar 

  • Sawada M, Mass Spectrom J (1997) Soc Jpn 45:439–458

    CAS  Google Scholar 

  • Scuderi D, Le Barbu-Debus K, Zehnacker A (2011) Phys Chem Chem Phys 13:17916–17929

    Article  CAS  Google Scholar 

  • Simons JP (2009) Mol Phys 107:2435–2458

    Article  CAS  Google Scholar 

  • Sinha RK, Maıtre P, Piccirillo S, Chiavarino B, Crestoni ME, Fornarini S (2010) Phys Chem Chem Phys 12:9794–9800

    Article  CAS  Google Scholar 

  • Speranza M. (2010) In Chiral Recognition in the Gas Phase. In: Zehnacker A (ed) CRC Press, Taylor & Francis, Boca Raton, FL, USA, pp 87–131

  • Speranza M, Satta M, Piccirillo S, Rondino F, Paladini A, Giardini A, Filippi A, Catone D (2005) Mass Spectrom Rev 24:588–610

    Article  CAS  Google Scholar 

  • Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996a) J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  • Svensson M, Humbel S, Morokuma K (1996b) J Chem Phys 105:3654–3661

    Article  CAS  Google Scholar 

  • Vairamani M, Kumari S (2010) In Chiral Recognition in the Gas Phase. In: Zehnacker A (ed) CRC Press, Taylor & Francis, Boca Raton, FL, USA, pp 143–166

  • Young BL, Cooks RG (2007) Int J Mass Spectrom 267:199–204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Piccirillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondino, F., Ciavardini, A., Satta, M. et al. Ultraviolet and infrared spectroscopy of neutral and ionic non-covalent diastereomeric complexes in the gas phase. Rend. Fis. Acc. Lincei 24, 259–267 (2013). https://doi.org/10.1007/s12210-013-0241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-013-0241-5

Keywords

Navigation