Skip to main content

Advertisement

Log in

Ni/ZrO2 Catalysts Synthesized via Urea Combustion Method for CO2 Methanation

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

A series of Ni/ZrO2 catalysts were synthesized by urea combustion method for CO2 methanation. The effects of zirconium precursors and urea dosage on the structure and catalytic performance of the catalysts were tested. Results showed that the Ni/ZrO2–O catalyst derived from zirconium oxynitrate hydrate exhibited better catalytic activity than the Ni/ZrO2 catalyst because of its higher Ni dispersion and smaller Ni particle size. In addition, the urea dosage significantly influenced the low-temperature activity of the catalysts by affecting the metal–support interaction, Ni dispersion, and Ni particle size. The Ni/ZrO2–O-0.4 catalyst with a urea-to-nitrate molar ratio of 0.4 exhibited the best catalytic activity owing to its moderate metal–support interaction, highest Ni dispersion, and smallest Ni particle size, achieving 69.2% CO2 conversion and 100% CH4 selectivity at 300 °C, 0.1 MPa, and a weight hour space velocity (WHSV) of 50,000 mL/(g·h). Moreover, the urea combustion method can lead to the entire phase transformation from monoclinic ZrO2 to tetragonal ZrO2 accompanied by the incorporation of oxygen vacancies in the ZrO2 lattice. This phenomenon can also be related to the high catalytic activity of the as-prepared catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li XN, Hagaman E, Tsouris C et al (2003) Removal of carbon dioxide from flue gas by ammonia carbonation in the gas phase. Energy Fuel 17(1):69–74

    Article  Google Scholar 

  2. Garbarino G, Bellotti D, Finocchio E et al (2016) Methanation of carbon dioxide on Ru/Al2O3: catalytic activity and infrared study. Catal Today 277:21–28

    Article  Google Scholar 

  3. Heyl D, Rodemerck U, Bentrup U (2016) Mechanistic study of low-temperature CO2 hydrogenation over modified Rh/Al2O3 catalysts. ACS Catal 6(9):6275–6284

    Article  Google Scholar 

  4. Lu HL, Yang XZ, Gao GJ et al (2016) Metal (Fe, Co, Ce or La) doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO2 methanation. Fuel 183:335–344

    Article  Google Scholar 

  5. Pan QS, Peng JX, Sun TJ et al (2014) Insight into the reaction route of CO2 methanation: promotion effect of medium basic sites. Catal Commun 45:74–78

    Article  Google Scholar 

  6. Dumrongbunditkul P, Witoon T, Chareonpanich M et al (2016) Preparation and characterization of Co-Cu-ZrO2 nanomaterials and their catalytic activity in CO2 methanation. Ceram Int 42(8):10444–10451

    Article  Google Scholar 

  7. Janlamool J, Praserthdam P, Jongsomjit B (2011) Ti-Si composite oxide-supported cobalt catalysts for CO2 hydrogenation. J Nat Gas Chem 20(5):558–564

    Article  Google Scholar 

  8. Zhang JY, Xin Z, Meng X et al (2013) Effect of MoO3 on structures and properties of Ni-SiO2 methanation catalysts prepared by the hydrothermal synthesis method. Ind Eng Chem Res 52(41):14533–14544

    Article  Google Scholar 

  9. Zhao KC, Li ZH, Bian L (2016) CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts. Front Chem Sci Eng 10(2):273–280

    Article  Google Scholar 

  10. Zhou GL, Liu HR, Cui KK et al (2016) Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation. Appl Surf Sci 383:248–252

    Article  Google Scholar 

  11. Takano H, Kirihata Y, Izumiya K et al (2016) Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation. Appl Surf Sci 388:653–663

    Article  Google Scholar 

  12. Muroyama H, Tsuda Y, Asakoshi T et al (2016) Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J Catal 343:178–184

    Article  Google Scholar 

  13. Meng FH, Song Y, Li X et al (2016) Catalytic methanation performance in a low-temperature slurry-bed reactor over Ni-ZrO2 catalyst: effect of the preparation method. J Sol-Gel Sci Technol 80:759–768

    Article  Google Scholar 

  14. Fan MT, Miao KP, Lin JD et al (2014) Mg-Al oxide supported Ni catalysts with enhanced stability for efficient synthetic natural gas from syngas. Appl Surf Sci 307:682–688

    Article  Google Scholar 

  15. Zazoua H, Saadi A, Bachari K et al (2014) Synthesis and characterization of Mg-M (M: Al, Fe, Cr) layered double hydroxides and their application in the hydrogenation of benzaldehyde. Res Chem Intermediat 40(3):931–946

    Article  Google Scholar 

  16. Pandey D, Deo G (2016) Effect of support on the catalytic activity of supported Ni-Fe catalysts for the CO2 methanation reaction. J Ind Eng Chem 33:99–107

    Article  Google Scholar 

  17. Liu HZ, Zou XJ, Wang XG et al (2012) Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. J Nat Gas Chem 21(6):703–707

    Article  Google Scholar 

  18. Hwang S, Lee J, Hong UG et al (2013) Methanation of carbon dioxide over mesoporous Ni-Fe-Ru-Al2O3 xerogel catalysts: effect of ruthenium content. J Ind Eng Chem 19(2):698–703

    Article  Google Scholar 

  19. Aziz MAA, Jalil AA, Triwahyono S et al (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B-Environ 147:359–368

    Article  Google Scholar 

  20. Minaei S, Haghighi M, Jodeiri N et al (2017) Urea-nitrates combustion preparation of CeO2-promoted CuO/ZnO/Al2O3 nanocatalyst for fuel cell grade hydrogen production via methanol steam reforming. Adv Powder Technol 28(3):842–853

    Article  Google Scholar 

  21. Singhania A, Gupta SM (2017) Nanocrystalline ZrO2 and Pt-doped ZrO2 catalysts for low-temperature CO oxidation. Beilstein J Nanotechnol 8:264–271

    Article  Google Scholar 

  22. Ji KM, Meng FH, Gao Y et al (2016) Effect of fuel on structure and catalytic performance for slurry methanation over Ni-Al2O3 catalysts prepared by combustion method. Chem J Chin U 37(1):134–141

    Google Scholar 

  23. Ji KM, Meng FH, Cao Y et al (2015) Solution combustion prepared Ni-based catalysts and their catalytic performance for slurry methanation. Chin J Inorg Chem 31(2):267–274 (in Chinese)

    Article  Google Scholar 

  24. Zhao KC, Wang WH, Li ZH (2016) Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation. J CO2 Util 16:236–244

    Article  Google Scholar 

  25. Gao Y, Meng FH, Li X et al (2016) Factors controlling nanosized Ni-Al2O3 catalysts synthesized by solution combustion for slurry-phase CO methanation: the ratio of reducing valences to oxidizing valences in redox systems. Catal Sci Technol 6(21):7800–7811

    Article  Google Scholar 

  26. Liu DP, Quek XY, Cheo WNE et al (2009) MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: effect of strong metal–support interaction. J Catal 266(2):380–390

    Article  Google Scholar 

  27. Velu S, Gangwal SK (2006) Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption. Solid State Ionics 177(7–8):803–811

    Article  Google Scholar 

  28. Takano H, Shinomiya H, Izumiya K et al (2015) CO2 methanation of Ni catalysts supported on tetragonal ZrO2 doped with Ca2+ and Ni2+ ions. Int J Hydrogen Energ 40(26):8347–8355

    Article  Google Scholar 

  29. Deleitenburg C, Trovarelli A (1995) Metal–support interactions in Rh/CeO2, Rh/TiO2, and Rh/Nb2O5 catalysts as inferred from CO2 methanation activity. J Catal 156(1):171–174

    Article  Google Scholar 

  30. Trovarelli A, Deleitenburg C, Dolcetti G et al (1995) CO2 methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2: the role of surface and bulk ceria. J Catal 151(1):111–124

    Article  Google Scholar 

  31. Yamasaki M, Habazaki H, Yoshida T et al (1997) Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors. Appl Catal A-Gen 163(1–2):187–197

    Article  Google Scholar 

  32. Li SR, Li MS, Zhang CX et al (2012) Steam reforming of ethanol over Ni/ZrO2 catalysts: effect of support on product distribution. Int J Hydrogen Energ 37(3):2940–2949

    Article  Google Scholar 

  33. Liu Q, Tian YY, Ai HM (2016) Methanation of carbon monoxide on ordered mesoporous NiO-TiO2-Al2O3 composite oxides. RSC Adv 6(25):20971–20978

    Article  Google Scholar 

  34. Liu Q, Gao JJ, Gu FN et al (2015) One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation. J Catal 326:127–138

    Article  Google Scholar 

  35. Mihaylov M, Tsoncheva T, Hadjiivanov K (2011) Structure sensitivity of methanol decomposition on Ni/SiO2 catalysts. J Mater Sci 46:7144–7151

    Article  Google Scholar 

  36. Aziz MAA, Jalil AA, Triwahyono S et al (2015) CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chem 17:2647–2663

    Article  Google Scholar 

  37. Cui DM, Liu J, Yu J et al (2015) Necessity of moderate metal–support interaction in Ni/Al2O3 for syngas methanation at high temperatures. RSC Adv 5:10187–10196

    Article  Google Scholar 

  38. Bian L, Wang WH, Xia R et al (2016) Ni-based catalyst derived from Ni/Al hydrotalcite-like compounds by the urea hydrolysis method for CO methanation. RSC Adv 6:677–686

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, L., Zhao, K. et al. Ni/ZrO2 Catalysts Synthesized via Urea Combustion Method for CO2 Methanation. Trans. Tianjin Univ. 24, 471–479 (2018). https://doi.org/10.1007/s12209-018-0126-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-018-0126-x

Keywords

Navigation