Pressure drop and flow characteristic of CO2 hydrate slurry formation in the presence of anti-agglomerant in a flow loop facility

Abstract

Recently, research focus has shifted from the prevention of hydrate formation in oil/gas pipelines, to the utilization of gas hydrate in various areas of application, such as cold storage, district cooling, and gas transportation. This study, investigated the pressure drop and flow pattern analysis of CO2 hydrate slurry in the presence of anti-agglomerant in a flow loop. A series of experiments were carried out on CO2 hydrate slurry with (10 to 32) % mass fractions at flow rates of (5 to 7) kg/min in the presence of (0, 0.3, 0.5, 0.7 and 1.0) wt.% concentration of Tween 80 (Polyoxyethylene (20) sorbitan monooleate) in a flow loop. The results show that the CO2 hydrate slurry can be divided into two zones based on the pressure drop and temperature behavior; an active formation region, and a less active formation region. It was found that as the hydrate slurry mean flow rate was increased, the gradient of the pressure drop increased. From the flow visualization, three different flow regimes exist for CO2 hydrate slurries, namely homogeneous, heterogeneous, and bedding flow, and those flow regimes were highly dependent on the hydrate fraction in the slurry mixture.

This is a preview of subscription content, access via your institution.

Abbreviations

d:

Flow loop internal diameter

f slu :

Friction factor of hydrate

L:

Flow loop length

U slu :

Average velocity of hydrate slurry

X Hyd :

Hydrate mass fraction

ρ CO2sol :

Density of CO2-water solution

ρ Hyd :

Density of hydrate

ρ slu :

Density of hydrate slurry

ΔP:

Pressure drop

References

  1. [1]

    E. D. Sloan, Binary hydrate guests, Nat. 2003 4266964 (2003).

  2. [2]

    E. D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, Third Ed., Chemical Industries Series, CRC Press (2007) 752 (2008).

  3. [3]

    L. Fournaison, A. Delahaye, I. Chatti and J. P. Petitet, CO2 hydrates in refrigeration processes, Ind. Eng. Chem. Res., 43 (2004) 6521–6526.

    Article  Google Scholar 

  4. [4]

    J. W. Choi, S. Kim and Y. T. Kang, CO2 hydrate cooling system and LCC analysis for energy transportation application, Appl. Therm. Eng., 91 (2015) 11–18.

    Article  Google Scholar 

  5. [5]

    H. Dashti, L. Z. Yew and X. Lou, Recent advances in gas hydrate-based CO2 capture, J. Nat. Gas Sci. Eng., 23 (2015) 195–207.

    Article  Google Scholar 

  6. [6]

    B. Castellani, M. Filipponi, A. Nicolini, F. Cotana and F. Rossi, Carbon dioxide capture using gas hydrate technology, J. Energy Power Eng., 7 (2013) 883–890.

    Google Scholar 

  7. [7]

    K. M. Sabil, N. Azmi and H. A. Mukhtar, Review of carbon dioxide hydrate potential in technological applications, J. Appl. Sci., 11 (2011) 3534–3540.

    Article  Google Scholar 

  8. [8]

    L. P. Hauge, K. A. Birkedal, G. Ersland and A. Graue, Methane production from natural gas hydrates by CO2 replacement — review of lab experiments and field trial, SPE Bergen One Day Seminar, Society of Petroleum Engineers (2014).

  9. [9]

    T. Dufour, H. M. Hoang, J. Oignet, V. Osswald, P. Clain, L. Fournaison and A. Delahaye, Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage, Appl. Energy, 204 (2017) 641–652.

    Article  Google Scholar 

  10. [10]

    H. P. Veluswamy, K. P. Premasinghe and P. Linga, CO2 hydrates — effect of additives and operating conditions on the morphology and hydrate growth, Proceedings of the Energy Procedia, Elsevier, 105 (2017) 5048–5054.

    Article  Google Scholar 

  11. [11]

    J. P. Torré, M. Ricaurte, C. Dicharry and D. Broseta, CO2 enclathration in the presence of water-soluble hydrate promoters: hydrate phase equilibria and kinetic studies in quiescent conditions, Chem. Eng. Sci., 82 (2012) 1–13.

    Article  Google Scholar 

  12. [12]

    J. J. Rajnauth, M. A. Barrufet and G. Falcone, Hydrate formation: considering the effects of pressure, temperature, composition and water, SPE EUROPEC/EAGE Annual Conference and Exhibition, Society of Petroleum Engineers (2010).

  13. [13]

    S. Zhou, H. Yan, D. Su, S. Navaneethakannan and Y. Chi, Investigation on the kinetics of carbon dioxide hydrate formation using flow loop testing, J. Nat. Gas Sci. Eng., 49 (2018) 385–392.

    Article  Google Scholar 

  14. [14]

    S. Jerbi, A. Delahaye, L. Fournaison and P. Haberschill, Characterization of CO2 hydrate formation and dissociation kinetics in a flow loop, Int. J. Refrig., 33 (2010) 1625–1631.

    Article  Google Scholar 

  15. [15]

    D. Yang, L. A. Le, R. J. Martinez, R. P. Currier and D. F. Spencer, Kinetics of CO2 hydrate formation in a continuous flow reactor, Chem. Eng. J., 172 (2011) 144–157.

    Article  Google Scholar 

  16. [16]

    C. Ruan, L. Ding, B. Shi, Q. Huang and J. Gong, Study of hydrate formation in gas-emulsion multiphase flow systems, Rsc Advances, 7 (2017) 48127–48135.

    Article  Google Scholar 

  17. [17]

    P. Vijayamohan, A. Majid, P. Chaudhari, E. D. Sloan, A. K. Sum, C. A. Koh, E. Dellacase and M. Volk, Hydrate modeling and flow loop experiments for water continuous and partially dispersed systems, Offshore Technology Conference (2014).

  18. [18]

    A. Perrin, O. M. Musa and J. W. Steed, The chemistry of low dosage clathrate hydrate inhibitors, Chem. Soc. Rev., 42 (2013) 1996.

    Article  Google Scholar 

  19. [19]

    R. Karimi, F. Varaminian, A. A. Izadpanah and A. H. Mohammadi, Effects of two surfactants sodium dodecyl sulfate (SDS) and polyoxyethylene (20) sorbitan monopalmitate (Tween(R)40) on ethane hydrate formation kinetics: experimental and modeling studies, J. Nat. Gas Sci. Eng., 21 (2014) 193–200.

    Article  Google Scholar 

  20. [20]

    J. Oignet, A. Delahaye, J. P. Torré, C. Dicharry, H. M. Hoang, P. Clain, V. Osswald, Z. Youssef and L. Fournaison, Rheological study of CO2 hydrate slurry in the presence of Sodium Dodecyl Sulfate in a secondary refrigeration loop, Chem. Eng. Sci., 158 (2017) 294–303.

    Article  Google Scholar 

  21. [21]

    B. Prah and R. Yun, CO2 hydrate slurry transportation in carbon capture and storage, Appl. Therm. Eng. (2017) 653–661.

  22. [22]

    A. Sinquin, T. Palermo and Y. Peysson, Rheological and flow properties of gas hydrate suspensions, Oil Gas Sci. Technol. — Rev. IFP, 59 (2004) 41–57.

    Article  Google Scholar 

  23. [23]

    A. Delahaye, L. Fournaison, S. Marinhas and M. C. Martínez, Rheological study of CO2 hydrate slurry in a dynamic loop applied to secondary refrigeration, Chem. Eng. Sci., 63 (2008) 3551–3559.

    Article  Google Scholar 

  24. [24]

    A. Delahaye, L. Fournaison, S. Jerbi and N. Mayoufi, Rheological properties of CO2 hydrate slurry flow in the presence of additives, Ind. Eng. Chem. Res., 50 (2011) 8344–8353.

    Article  Google Scholar 

  25. [25]

    K. L. Yan et al., Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus, Chem. Eng. Sci., 106 (2014) 99–108.

    Article  Google Scholar 

  26. [26]

    V. Andersson and J. Ó. N. S. Gudmundsson, Flow properties of hydrate-in-water slurries, Ann. N. Y. Acad. Sci., 912 (2000) 322–329.

    Article  Google Scholar 

  27. [27]

    Z. Rehman, K. Seong, S. Lee and M. H. Song, Experimental study on the rheological behavior of tetrafluoroethane (R-134a) hydrate slurry, Chem. Eng. Commun., 205 (2018) 822–832.

    Article  Google Scholar 

  28. [28]

    L. Ding, B. Shi, X. Lv, Y. Liu, H. Wu, W. Wang and J. Gong, Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop, Chem. Eng. Sci., 146 (2016) 199–206.

    Article  Google Scholar 

  29. [29]

    Y. Rao, Z. Wang, S. Wang, M. Yang, Y. Rao, Z. Wang, S. Wang and M. Yang, Investigation on gas hydrate slurry pressure drop properties in a spiral flow loop, Energies, 11 (2018) 1384.

    Article  Google Scholar 

  30. [30]

    W. Wang, S. Fan, D. Liang and Y. Li, Experimental study on flow characteristics of tetrahydrofuran hydrate slurry in pipelines, J. Nat. Gas Chem., 19 (2010) 318–322.

    Article  Google Scholar 

  31. [31]

    A. Majid, D. Wu and C. A. Koh, A perspective on rheological studies of gas hydrate slurry properties, Engineering, 4 (2018) 321–329.

    Article  Google Scholar 

  32. [32]

    B. Shi, S. Chai, L. Wang, X. Lv, H. Liu, H. Wu, W. Wang, D. Yu and J. Gong, Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives, Fuel, 185 (2016) 323–338.

    Article  Google Scholar 

  33. [33]

    P. R. Bishnoi and V. Natarajan, Formation and decomposition of gas hydrates, Fluid Phase Equilib., 117 (1996) 168–177.

    Article  Google Scholar 

  34. [34]

    Z. Liu, M. V. Farahani, M. Yang, X. Li, J. Zhao, Y. Song and J. Yang, Hydrate slurry flow charateristics influenced by formation, agglomeration, and deposition in a fully visual flow loop, Fuel, 277 (2020) 118066.

    Article  Google Scholar 

  35. [35]

    Z. M. Aman and C. A. Koh, Interfacial phenomena in gas hydrate systems, Chem. Soc. Rev., 45 (2016) 1678–1690.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B02010075).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rin Yun.

Additional information

Benedict Prah is a Ph.D. at the Department of Mechanical Engineering, Hanbat National University. He is studying the application of CO2 hydrate in Carbon Capture and Storage (CCS) technology. Prah holds an MEng in Mechanical engineering from Hanbat National University.

Rin Yun is a Professor of Department of Mechanical Engineering, Hanbat National University, Daejeon, South Korea. His research interests are utilizing natural refrigerants, transportation of captured CO2, and gas-hydrate as a secondary fluid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prah, B., Yun, R. Pressure drop and flow characteristic of CO2 hydrate slurry formation in the presence of anti-agglomerant in a flow loop facility. J Mech Sci Technol 35, 761–770 (2021). https://doi.org/10.1007/s12206-021-0136-9

Download citation

Keywords

  • Pressure drop
  • Anti-agglomerant
  • CO2 hydrate
  • Gas transportation
  • Flow patterns