Measurement enhancement of TDLAS based on variable weighted cross-correlation tomography for the simultaneous reconstruction of 2D temperature and concentration

Abstract

Tunable diode laser absorption tomography is a technology that enables the visualization of 2D temperature and concentration in combustion fields. This study proposes a method called variable weighted cross-correlation tomography to improve the traditional two-wavelength scheme affected by signal noise and bias error. The proposed approach combines the multiplicative algebraic reconstruction technique and pattern matching at nine wavelengths by adding peak and bottom wavelengths. In addition, this method iteratively calculates using a corrective multiplication line-of-sight and a modified return process to simultaneously estimate the images of 2D temperature and concentration. Numerical tests are performed using various thermodynamic models with additive noise. The validation experiments involving premixed methane-air flames demonstrate the good agreement between the average relative error values of the reconstructed temperature and the temperature measured using thermocouple (3.32 %), which can be ascribed to the introduction of modified broadening coefficients.

This is a preview of subscription content, access via your institution.

Abbreviations

A λj :

Integrated absorbance

α λ :

Absorption coefficient

VWCC :

Variable weighted cross-correlation

MART :

Multiplicative algebraic reconstruction technique

ω :

Variable weight coefficient

β :

Relaxation factor

T rec :

Reconstructed temperature

T pha :

Phantom temperature

X rec :

Reconstructed concentration

X pha :

Phantom concentration

NRMSE T :

Normalized RMSE of temperature distributions

NRMSE X :

Normalized RMSE of concentration distributions

Error R,T :

Relative temperature error

Error R,X :

Relative concentration error

TC :

Thermocouple

References

  1. [1]

    B. Lin and C. Y. Lin, Compliance with international emission regulations: reducing the air pollution from merchant vessels, Mar. Pol., 30(3) (2006) 220–226.

    MathSciNet  Article  Google Scholar 

  2. [2]

    A. A. Banawan, M. Mosleh and I. S. Seddiek, Prediction of the fuel saving and emissions reduction by decreasing speed of a catamaran, J. Mar. Eng. Technol., 12(3) (2013) 40–48.

    Google Scholar 

  3. [3]

    T. Grigoratos, G. Fontaras, B. Giechaskiel and N. Zacharof, Real world emissions performance of heavy-duty Euro VI diesel vehicles, Atmos. Environ., 201(15) (2019) 348–359.

    Article  Google Scholar 

  4. [4]

    D. Hoffman, K.-U. Münch and A. Leipertz, Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering, Opt. Lett., 21(7) (1996) 525–527.

    Article  Google Scholar 

  5. [5]

    L. M. Itani, G. Bruneaux, A. Di Lella and C. Schulz, Two-tracer LIF imaging of preferential evaporation of multi-component gasoline fuel sprays under engine conditions, Proc. Combust. Inst., 35(3) (2015) 2915–2922.

    Article  Google Scholar 

  6. [6]

    P. Sun, Z. Zhang, Z. Li, Q. Gou and F. Dong, Study of two dimensional tomography reconstruction of temperature and gas concentration in combustion field using TDLAS, Appl. Sci., 7(10) (2017) 990.

    Article  Google Scholar 

  7. [7]

    M. A. Bolshov, Y. A. Kuritsyn and Y. V. Romanovskii, Tunable diode laser spectroscopy as a technique for combustion diagnostics, Spectrochimica. Acta. Part B, 106 (2015) 45–66.

    Article  Google Scholar 

  8. [8]

    J. W. Shi, H. Qi, J. Y. Zhang, Y. T. Ren and L. M. Ruan, Simultaneous measurement of flame temperature and species concentration distribution from nonlinear tomographic absorption spectroscopy, J. Quant. Spectrosc. Radiat. Transfer, 241 (2020) 106693.

    Article  Google Scholar 

  9. [9]

    J. Song, Y. Hong, G. Wang and H. Pan, Algebraic tomographic reconstruction of two dimensional gas temperature based on tunable diode laser absorption spectroscopy, Appl. Phys. B, 112(4) (2013) 529–537.

    Article  Google Scholar 

  10. [10]

    J. Song, Y. Hong, M. Xin, G. Wang and Z. Liu, Tomography system for measurement of gas properties in combustion flow field, Chin. J. Aeronaut., 30(5) (2017) 529–537.

    Google Scholar 

  11. [11]

    F. Wang, Q. Wu, Q. Huang, H. Zhang, J. Yan and K. Cen, Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology, Opt. Commun., 346 (2015) 53–63.

    Article  Google Scholar 

  12. [12]

    D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi and D. H. Doh, Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS), J. Therm. Sci., 25(1) (2016) 84–89.

    Article  Google Scholar 

  13. [13]

    M. G. Jeon, Y. Deguchi, T. Kamimoto, D. H. Doh and G. R. Cho, Performances of new reconstruction algorithms for CT-TDLAS (computer tomography-tunable diode laser absorption spectroscopy), Appl. Therm. Eng., 115 (2017) 1148–1160.

    Article  Google Scholar 

  14. [14]

    M. G. Jeon, Y. J. W. Hong, D. H. Doh and Y. Deguchi, A study on two-dimensional temperature and concentration distribution of propane-air premixed flame using CT-TDLAS, Mod. Phys. Lett. B, 34(07n09) (2020) 2040020.

    Article  Google Scholar 

  15. [15]

    L. Ma and W. Cai, Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging, Appl. Optics, 47(23) (2008) 3751–3759.

    Article  Google Scholar 

  16. [16]

    L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons and J. R. Gord, 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography, Opt. Express, 21(1) (2013) 1152–1162.

    Article  Google Scholar 

  17. [17]

    D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi and D. H. Doh, Developments of a cross-correlation calculation algorithm for gas temperature distributions based on TDLAS, Trans. Korean Hydrog. New Energy Soc., 27(1) (2016) 127–134.

    Article  Google Scholar 

  18. [18]

    F. Stritzke, S. V. D. Kely, A. Feiling, A. Dreizler and S. Wagner, TDLAS-based NH3 mole fraction measurement for exhaust diagnostics during selective catalytic reduction using a fiber-coupled 2.2-µm DFB diode laser, Opt. Express, 119 (2015) 143–152.

    Google Scholar 

  19. [19]

    R. R. Gamache, S. Kennedy, R. Hawkins and L. S. Rothman, Total internal partition sums for molecules in the terrestrial atmosphere, J. Mol. Struct., 517–518 (2000) 407–425.

    Article  Google Scholar 

  20. [20]

    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev and G. Wagner, The HITRAN2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 130 (2013) 4–50.

    Article  Google Scholar 

  21. [21]

    D. H. Hong, L. Wang and T. K. Truong, Low-complexity direct computation algorithm for cubic-spline interpolation scheme, J. Vis. Commun. Image Represent., 50 (2018) 159–166.

    Article  Google Scholar 

  22. [22]

    C. Atkinson and J. Soria, An efficient simultaneous reconstruction technique for tomographic particle image velocimetry, Exp. Fluids, 47 (2009) 553–568.

    Article  Google Scholar 

  23. [23]

    Y. Deguchi, D. Yasui and A. Adachi, Development of 2D temperature and concentration measurement method using tunable diode laser absorption spectroscopy, J. Mech. Eng. Automat., 2 (2012) 543–549.

    Google Scholar 

  24. [24]

    H. Jang and D. Choi, Similarity analysis for time series-based 2D temperature measurement of engine exhaust gas in TDLAT, Appl. Sci., 10 (2020) 285.

    Article  Google Scholar 

  25. [25]

    Y. Zaatar, J. Bechara, A. Khoury, D. Zaouk and J.-P. Charles, Diode laser sensor for process control and environmental monitoring, Appl. Energy, 65 (2000) 107–113.

    Article  Google Scholar 

  26. [26]

    D. Choi, G. Cho, Y. Deguchi, T. Baek and D. Doh, Study on optimal coefficients of line broadening function for performance enhancements of CT-TDLAS, Trans. Korean Hydrog. New Energy Soc., 27(6) (2016) 773–782.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT; 2018R1C1B5085281).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Doo-Won Choi.

Additional information

Gyong-Rae Cho earned his B.S. and M.S. degrees in Refrigeration and Air-Conditioning Engineering from Korea Maritime and Ocean University (KMOU) in 1999 and 2001, respectively. He also earned a degree from the Department of Product Sciences in Saitama University, Japan in 2004. He is currently working as a Research Professor at KMOU. His main interests include computational fluid dynamics, flow visualization, and artificial intelligence in industry.

Doo-Won Choi earned his B.S. and M.S. degrees in Refrigeration and Air-Conditioning Engineering from KMOU in 2005 and 2007, respectively. He also earned a degree from the Department of Mechanical Engineering in Tokushima University, Japan in 2016. He is currently working as an Assistant Professor at Silla University. His main interests include fundamentals of combustion and computational fluid dynamics in industry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, GR., Choi, DW. Measurement enhancement of TDLAS based on variable weighted cross-correlation tomography for the simultaneous reconstruction of 2D temperature and concentration. J Mech Sci Technol 35, 525–534 (2021). https://doi.org/10.1007/s12206-021-0111-5

Download citation

Keywords

  • Tunable diode laser absorption tomography
  • Reconstruction temperature
  • Reconstruction concentration
  • Cross-correlation
  • Premixed methane-air flame