Skip to main content
Log in

On a momentum interpolation scheme for collocated meshes with improved discrete kinetic energy conservation

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we investigate the effects of momentum interpolation (MI) schemes for collocated meshes on DNS and LES with relatively coarse meshes. Based on this, the primary objective is to present how a MI scheme with reduced errors in mass and discrete kinetic energy (DKE) conservation affects the quality of the simulation results. From an existing MI scheme used widely, it is shown that the continuity equation has a first-order error in time based on the CV-centered velocity. With a specific choice of the pressure variable of the order of the pressure change for interpolating the face velocity, we derive a MI scheme with temporally second-order for the continuity equation. It is noted that this scheme drives the continuity and DKE errors to zero for a steady flow or very small time step. When applied to DNS and LES of a turbulent channel flow and a turbulent flow around an airfoil, the suggested MI scheme with reduced error results in more accurate prediction of mean and RMS flow fields. In order to examine the effects of the MI schemes on the turbulent pressure field, energy and power spectra of pressure fluctuations are examined. The pressure spectra with the revised MI scheme show no clear sign of pressure wiggles at high frequencies and more accurate prediction of small-to-large scale fluctuations, which shows effectiveness of the revised scheme and importance of the mass and DKE conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Benhamadouche and D. Laurence, Global kinetic energy conservation with unstructured meshes, Int. J. Numer. Meth. Fluids, 40 (3–4) (2002) 561–571.

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Desjardins, G. Blanquart, G. Balarac and H. Pitsch, High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys., 227 (2008) 7125–7159.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. E. Honein and P. Moin, Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201 (2) (2004) 531–545.

    Article  MATH  Google Scholar 

  4. K. Mahesh, G. Constantinescu and P. Moin, A numerical method for large-eddy simulation in complex geometries, J. Comput. Phys., 197 (1) (2004) 215–240.

    Article  MATH  Google Scholar 

  5. Y. Morinishi, T. S. Lund, O. V. Vasilyev and P. Moin, Fully conservative higher order finite difference schemes for incompressible flow, J. Comput. Phys., 143 (1998) 90–124.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Morinishi, O. V. Vasilyev and T. Ogi, Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations, J. Comput. Phys., 197 (2004) 686–710.

    Article  MATH  Google Scholar 

  7. B. Perot, Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys., 159 (2000) 58–89.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. K. Subbareddy and G. V. Candler, A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows, J. Comput. Phys., 228 (2009) 1347–1364.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Rhie and W. Chow, A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J., 21 (1983) 1525–1532.

    Article  MATH  Google Scholar 

  10. Y. Zang, R. L. Street and J. R. Koseff, A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates, J. Comput. Phys., 114 (1) (1994) 18–33.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Botti and D. A. D. Pietro, A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J. Comput. Phys., 230 (3) (2011) 572–585.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. K. Choi, Note on the use of momentum interpolation method for unsteady flows, Numer. Heat Transfer A, 36 (5) (1999) 545–550.

    Article  Google Scholar 

  13. S. K. Choi, H. Y. Nam and M. Cho, Use of the momentum interpolation method for numerical solution of incompressible flows in complex geometries: Choosing cell face velocities, Numer. Heat Transfer B, 23 (1) (1993) 21–41.

    Article  Google Scholar 

  14. F. N. Felten and T. S. Lund, Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow, J. Comput. Phys., 215 (2) (2006) 465–484.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Li, B. Yu, X. Wang and S. Sun, Calculation of cell face velocity of non-staggered grid system, Appl. Math. Mech., 33 (8) (2012) 991–1000.

    Article  MathSciNet  Google Scholar 

  16. X.-S. Li and C.-W. Gu, The momentum interpolation method based on the time-marching algorithm for all-speed flows, J. Comput. Phys., 229 (20) (2010) 7806–7818.

    Article  MATH  Google Scholar 

  17. F. S. Lien and M. Leschziner, A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation, Computer Methods in Applied Mechanics and Engineering Comput. Methods Appl. Mech. Eng., 114 (1) (1994) 123–148.

    Article  Google Scholar 

  18. J.-G. Liu, J. Liu and R. L. Pego, Stable and accurate pressure approximation for unsteady incompressible viscous flow, J. Comput. Phys., 229 (9) (2010) 3428–3453.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Majumdar, Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids, Numer. Heat Transfer, 13 (1) (1988) 125–132.

    Article  MathSciNet  Google Scholar 

  20. T. F. Miller and F. W. Schmidt, Use of a pressureweighted interpolation method for the solution of the incompressible Navier-Stokes equations on a nonstaggered grid system, Numerical Heat Transfer, 14 (2) (1988) 213–233.

    Article  MATH  Google Scholar 

  21. C. Min and F. Gibou, A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids, J. Comput. Phys., 219 (2) (2006) 912–929.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Moguen, T. Kousksou, P. Bruel, J. Vierendeels and E. Dick, Pressure-velocity coupling allowing acoustic calculation in low Mach number flow, J. Comput. Phys., 231 (16) (2012) 5522–5541.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Pascau, Cell face velocity alternatives in a structured colocated grid for the unsteady Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 65 (7) (2011) 812–833.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Z. Shen, J. A. Michelsen and J. N. Sorensen, Improved Rhie-Chow interpolation for unsteady flow computations, AIAA J., 39 (12) (2001) 2406–2409.

    Article  Google Scholar 

  25. A. Tasri, Simple improvement of momentum interpolation equation for Navier-Stokes equation solver on unstructured grid, J. Math. Stat., 6 (3) (2010) 265–270.

    Article  MATH  Google Scholar 

  26. J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7 (3) (1986) 870–891.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Yu, W.-Q. Tao, J.-J. Wei, Y. Kawaguchi, T. Tagawa and H. Ozoe, Discussion on momentum interpolation method for collocated grids of incompressible flow, Numer. Heat Transfer B, 42 (2) (2002) 141–166.

    Article  Google Scholar 

  28. F. X. Trias, O. Lehmkuhl, A. Oliva, C. D. Pérez-Segarra and R. W. C. P. Verstappen, Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J. Comput. Phys., 258 (2014) 246–267.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. van’t Hof and A. E. P. Veldman, Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations, J. Comput. Phys., 231 (14) (2012) 4723–4744.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Kang, H. Pitsch and N. Hur, On a robust ALE method with discrete primary and secondary conservation, J. Comput. Phys., 254 (2013) 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. E. Ham, F. S. Lien and A. B. Strong, A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids, J. Comput. Phys., 177 (1) (2002) 117–133.

    Article  MATH  Google Scholar 

  32. Y. Morinishi, Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, J. Comput. Phys., 229 (2010) 276–300.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. K. Dukowicz and A. S. Dvinsky, Approximate factorization as a high order splitting for the implicit incompressible flow equations, J. Comput. Phys., 102 (1992) 336–347.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Kim and P. Moin, Application of a fractional-stepmethod to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985) 308–323.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Choi and P. Moin, Effects of the computational time step on numerical solutions of turbulent flow, J. Comput. Phys., 113 (1) (1994) 1–4.

    Article  MATH  Google Scholar 

  36. J. L. Shashank and G. Iaccarino, A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit, J. Comput. Phys., 229 (12) (2010) 4425–4430.

    Article  MATH  Google Scholar 

  37. R. D. Moser, J. Kim and N. N. Mansour, Direct numerical simulation of turbulent channel flow up to Re_τ=590, Phys. Fluids, 11 (4) (1999) 943–945.

    Article  MATH  Google Scholar 

  38. S. Kang, G. Iaccarino, F. Ham and P. Moin, Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method, J. Comput. Phys., 228 (18) (2009) 6753–6772.

    Article  MATH  Google Scholar 

  39. M. Wang, S. Moreau, G. Iaccarino and M. Roger, LES prediction of pressure fluctuations on a low speed airfoil, Annual Research Briefs (Center for Turbulence Research, NASA Ames and Stanford University) (2004) 183.

    Google Scholar 

  40. H. Kobayashi, The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow, Phys. Fluids, 17 (4) (2005) 045104.

    Article  MATH  Google Scholar 

  41. M. Roger and S. Moreau, Broadband self-noise from loaded fan blades, AIAA J., 42 (3) (2004) 536–544.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI14C0746). It is supported also by the National Research Foundation of Korea (NRF) grant by the Korea government (MSIP) (No. 2017M2A8A4018482).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongwon Kang.

Additional information

Recommended by Associate Editor Yang Na

Eunbeom Jung received the B.S. and M.S. degrees in mechanical engineering from Sogang University, Korea in 2015 and 2017. His research interests include problems of turbulent heat transfer.

Seongwon Kang received the B.S. and M.S. degrees in mechanical engineering from Seoul National University, Korea in 1997 and 1999, and Ph.D. degree in mechanical engineering from Stanford University, USA in 2008.

Nahmkeon Hur received the B.S. and M.S. degrees in mechanical engineering from Seoul National University, Korea in 1979 and 1981, and Ph.D. degree in mechanical engineering from Stevens Institute of Technology, USA in 1988.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Jung, E., Kang, S. et al. On a momentum interpolation scheme for collocated meshes with improved discrete kinetic energy conservation. J Mech Sci Technol 33, 2761–2768 (2019). https://doi.org/10.1007/s12206-019-0522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-019-0522-8

Keywords

Navigation