Journal of Mechanical Science and Technology

, Volume 32, Issue 2, pp 885–895 | Cite as

Optimal cold sink temperature for thermoelectric dehumidifiers

  • Joonoh Kim
  • Keunhwan Park
  • Duck-Gyu Lee
  • Young Soo Chang
  • Ho-Young Kim
Article

Abstract

We propose an optimal cold sink temperature for thermoelectric dehumidifiers based on theoretical and experimental investigations. We show that the optimal condition is such that the latent heat absorption rate per unit power supplied to the dehumidifier is maximized. In consideration of the cooling ability of Peltier pellet and the heat exchange characteristics of the cold sink, we estimate the condensation rate as a function of the cold sink temperature. The theoretical predictions are compared with the results of experiments by using a prototype dehumidifier. We emphasize that the cold sink temperature is a critical parameter that determines the performance of dehumidification. Our study may provide an important insight to the thermoelectric dehumidification system and to designing a cold sink for thermoelectric dehumidifiers with improved energy efficiency.

Keywords

Cold sink Condensation Energy efficiency Thermoelectric dehumidifier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. M. Rowe, Thermoelectrics, an environmentally-friendly source of electrical power, Renew. Energy, 16 (1–4) (1999) 1251–1256.CrossRefGoogle Scholar
  2. [2]
    S. B. Riffat and X. Ma, Improving the coefficient of performance of thermoelectric cooling systems: A review, Int. J. Energy Res., 28 (9) (2004) 753–768.CrossRefGoogle Scholar
  3. [3]
    S. B. Riffat and G. Qiu, Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners, Appl. Therm. Eng., 24 (14) (2004) 1979–1993.CrossRefGoogle Scholar
  4. [4]
    K. Manohar and A. A. Adeyanju, Comparison of the experimental performance of a thermoelectric refrigerator with a vapour compression refrigerator, International Journal of Technical Research and Applications, 2 (3) (2014) 1–5.Google Scholar
  5. [5]
    S. B. Riffat and X. Ma, Thermoelectrics: a review of present and potential applications, Appl. Therm. Eng., 23 (8) (2003) 913–935.CrossRefGoogle Scholar
  6. [6]
    P. K. Bansal and A. Martin, Comparative study of vapour compression, thermoelectric and absorption refrigerators, Int. J. Energy Res., 24 (2) (2000) 93–107.CrossRefGoogle Scholar
  7. [7]
    C. Udomsakdigool, J. Hirunlabh, J. Khedari and B. Zeghmati, Design optimization of a new hot heat sink with a re-ctangular fin array for thermoelectric dehumidifiers, Heat Transfer Eng., 28 (7) (2007) 645–655.CrossRefGoogle Scholar
  8. [8]
    H.-Y. Li and K.-Y. Chen, Thermal performance of plate-fin heat sinks under confined impinging jet conditions, Int. J. Heat Mass Transfer, 50 (9) (2007) 1963–1970.CrossRefGoogle Scholar
  9. [9]
    D. Astrain, J. G. Vián and M. Domínguez, Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation, Appl. Therm. Eng., 23 (17) (2003) 2183–2200.CrossRefGoogle Scholar
  10. [10]
    J. G. Vián and D. Astrain, Development of a heat exchanger for the cold side of a thermoelectric module, Appl. Therm. Eng., 28 (11) (2008) 1514–1521.CrossRefGoogle Scholar
  11. [11]
    J. G. Vián and D. Astrain, Optimisation of a thermosyphon used to dissipate heat from a Peltier pellet, Domestic refrigeration application, J. Thermoelectr., 2 (2001) 55–68.Google Scholar
  12. [12]
    S. B. Riffat, S. A. Omer and X. Ma, A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation, Renew. Energy, 23 (2) (2001) 313–323.CrossRefGoogle Scholar
  13. [13]
    R. Chein and Y. Chen, Performances of thermoelectric cooler integrated with microchannel heat sinks, Int. J. Refrig., 28 (6) (2005) 828–839.CrossRefGoogle Scholar
  14. [14]
    K. Chen, An analysis of the heat transfer rate and efficiency of TE (thermoelectric) cooling systems, Int. J. Energy Res., 20 (5) (1996) 399–417.CrossRefGoogle Scholar
  15. [15]
    J. G. Vián, D. Astrain and M. Domínguez, Numerical modelling and a design of a thermoelectric dehumidifier, Appl. Therm. Eng., 22 (4) (2002) 407–422.CrossRefGoogle Scholar
  16. [16]
    W. Huajun and Q. Chengying, Experimental study of operation performance of a low power thermoelectric cooling dehumidifier, Int. J. Energy Environ., 1 (3) (2010) 459–466.Google Scholar
  17. [17]
    Y. Hua, Z. Kang and Q. Chengying, Experimental investigation of operation characteristics of a thermoelectric dehumidifier, 3rd International Conference on Knowledge Discovery and Data Mining, IEEE (2010) 163–166.Google Scholar
  18. [18]
    C. Alaoui and Z. M. Salameh, Solid state heater cooler: Design and evaluation, Power Engineering. Large Engineering Systems Conference on. IEEE (2001) 139–145.Google Scholar
  19. [19]
    A. Lee, M.-W. Moon, H. Lim, W.-D. Kim and H.-Y. Kim, Water harvest via dewing, Langmuir, 28 (27) (2012) 10183–10191.CrossRefGoogle Scholar
  20. [20]
    J. A. Chávez, J. A. Ortega, J. Salazar, A. Turó and M. J. García, SPICE model of thermoelectric elements including thermal effects, Proc. of the 17th IEEE Instrumentation and Measurement Technology Conference, 2 (2000) 1019–1023.CrossRefGoogle Scholar
  21. [21]
    C. Alaoui, Peltier thermoelectric modules modeling and evaluation, Int. J. Eng., 5 (1) (2011) 114.Google Scholar
  22. [22]
    S. Lineykin and S. Ben-Yaakov, Modeling and analysis of thermoelectric modules, IEEE Trans. Ind. Appl., 43 (2) (2007) 505–512.CrossRefGoogle Scholar
  23. [23]
    J. E. R. Coney, C. G. W. Sheppard and E. A. M. El-Shafei, Fin performance with condensation from humid air: A numerical investigation, Int. J. Heat Fluid Flow, 10 (3) (1989) 224–231.CrossRefGoogle Scholar
  24. [24]
    ASHRAE Handbook, Fundamentals 2005, American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, USA (2005).Google Scholar
  25. [25]
    B. Kundu, Approximate analytic solution for performances of wet fins with a polynomial relationship between humidity ratio and temperature, Int. J. Therm. Sci., 48 (11) (2009) 2108–2118.CrossRefGoogle Scholar
  26. [26]
    R. R. Rogers and M. K. Yau, A short course in cloud physics, Third Ed., Butterworth-Heinemann Press (1989).Google Scholar
  27. [27]
    G. Comini, C. Nonino and S. Savino, Numerical evaluation of fin performance under dehumidifying conditions, J. Heat Transfer, 129 (10) (2007) 1395–1402.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Joonoh Kim
    • 1
  • Keunhwan Park
    • 1
    • 2
  • Duck-Gyu Lee
    • 3
  • Young Soo Chang
    • 4
  • Ho-Young Kim
    • 1
    • 5
  1. 1.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  2. 2.Institute of Advanced Machines and DesignSeoul National UniversitySeoulKorea
  3. 3.Korea Institute of Machinery and MaterialsDaejeonKorea
  4. 4.School of Mechanical EngineeringKookmin UniversitySeoulKorea
  5. 5.Big Data InstituteSeoul National UniversitySeoulKorea

Personalised recommendations