Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 2, pp 679–687 | Cite as

Numerical and experimental study on the thermal characteristics of a steam reformer

  • Taehyun Jo
  • Bonchan Koo
  • Yonghan Lee
  • Hyunkyoo So
  • Dohyung Lee
Article
  • 57 Downloads

Abstract

In this study, the performance evaluation of a cylindrical natural-gas steam reformer is experimentally and numerically performed with a special focus on thermal operation conditions. The evaluation system is configured to probe the thermal and chemical characteristics of a steam reformer that does not employ a high temperature shift and a low temperature shift. The acquired experimental data is used to validate the proposed numerical model. A combination of experimental and numerical data provides detailed information leading to a better understanding of the internal reaction. An appropriate control of the heat source in the steam reformer is extremely important because the endothermic process is dominant throughout the catalyst layer. The results indicate that the thermal efficiency is enhanced by appropriately managing combustor heat, reactant concentration, and inflow rates as implemented by inlet gas control into the main reactor and combustor. A parametric study of operation control variables, such as Steam to carbon ratio (SCR) and combustible reactant ratio, could determine the optimal values for the highest thermal performance.

Keywords

Steam reformer Fuel cell Combustion Evaluation apparatus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. D. Andrew, Hydrogen generation from natural gas for the fuel cell systems of tomorrow, Int. J. Power Sources, 61 (1996) 113–124.CrossRefGoogle Scholar
  2. [2]
    A. F. Ghenciu, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems, Curr. Opin. Solid State Mater. Sci., 6 (2002) 389–399.CrossRefGoogle Scholar
  3. [3]
    N. T. Rostrup, Manufacture of hydrogen, Catal. Today, 106 (2005) 293–296.CrossRefGoogle Scholar
  4. [4]
    N. A. John, Review the multiple roles for catalysis in the production of H2, Appl. Catal., A., 176 (1999) 159–176.CrossRefGoogle Scholar
  5. [5]
    A. C. D. Joelmir and J. M. Assaf, Autothermal reforming of methane over Ni-Al2O3 catalysts: The enhancement effect of small quantities of noble metals, Int. J. Power Sources, 130 (2004) 106–110.CrossRefGoogle Scholar
  6. [6]
    J. Larmine and A. Dicks, Fuel cell systems explained, Second Edition, England: Wiley (2003).CrossRefGoogle Scholar
  7. [7]
    R. P. O'hayre, S.-W. Cha, G. C. Whitney and F. B. Prinz, Fuel cell fundamentals, America Wiley (2006).Google Scholar
  8. [8]
    S. Lee, W. R. Schwartz, J.-R. Choi, J.-G. Ahn, D.-H. Kim, I.-H. Son, W. C. Shin and J.-Y. Kim, Start-up characteristics of commercial propane steam reformer for 200 We portable fuel cell system, Int. J. Hydrogen Energy, 351 (2010) 12286–12294.CrossRefGoogle Scholar
  9. [9]
    M. Zanr and A. Gavriilidis, Catalytic combustion assisted methane steam reforming in a catalytic plate reactor, Chem. Eng. (London), 58 (2003) 3947–3960.Google Scholar
  10. [10]
    A. E. Lutza, R. W. Bradshawa, J. O. Kellera and D. E. Witmerb, Thermodynamic analysis of hydrogen production by steam reforming, Int. J. Hydrogen Energy, 28 (2003) 159–167.CrossRefGoogle Scholar
  11. [11]
    K. Hou and R. Hughes, The kinetics of methane steam reforming over a Ni/a-Al2O catalyst, Chem. Eng. J., 8 (2001) 311–328.CrossRefGoogle Scholar
  12. [12]
    K.-S. Cha, H.-S. Kim, B.-K. Yoo, Y.-S. Lee, K.-S. Kang, C.-S. Park and Y.-H. Kim, Reaction characteristics of twostep methane reforming over a Cu-ferriteCe_ZrO2 medium reforming, Int. J. Hydrogen Energy, 34 (2009) 1801–1808.CrossRefGoogle Scholar
  13. [13]
    J. R. Rostrup-Nielsen, Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane, J. Catal., 85 (1984) 31–43.CrossRefGoogle Scholar
  14. [14]
    S.-T. Lin, Y.-H. Chen, C. C. Yu, Y.-C. Liu and C.-H. Lee, Modelling an experimental methane fuel processor, Journal of Power Sources, 148 (2005) 44–53.CrossRefGoogle Scholar
  15. [15]
    G. George, Dimopoulos, C. S. Iason and M. P. K. Nikolaos, Exergy analysis and optimisation of a steam methane prereforming system, Energy, 58 (2013) 17–27.CrossRefGoogle Scholar
  16. [16]
    A. Serrano-Lotina and L. Daza, Influence of the operating parameters over dry reforming of methane to syngas, International J. of Hydrogen Energy, 39 (2014) 4089–4094.CrossRefGoogle Scholar
  17. [17]
    N. Morlanes, Reaction mechanism of naphtha steam reforming on nickel-based catalysts, and FTIR spectroscopy with CO adsorption to elucidate real active sites, International Journal of Hydrogen Energy, 38 (2013) 3588–3596.CrossRefGoogle Scholar
  18. [18]
    J. Park, S. Lee, S. Kim and J. Bae, Numerical analysis of the heat and mass transfer characteristics in an autothermal methane reformer, J. Fuel Cell Sci. Technol., 7 (2010) 051018–1.CrossRefGoogle Scholar
  19. [19]
    M. Nijemeisland, A. G. Dixona and E. H. Stitt, Catalyst design by CFD for heat transfer and reaction in steam reforming, Chem. Eng. J., 59 (2004) 5185–5191.CrossRefGoogle Scholar
  20. [20]
    M. Ni, 2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer, Energy Convers. Manage, 65 (2013) 155–163.CrossRefGoogle Scholar
  21. [21]
    A. G. Dixon, M. E. Taskin, M. Nijemeisland and E. H. Stitt, A CFD method to couple 3D transport and reaction in fixed bed catalyst pellets to the external flow field, Ind. Eng. Chem. Res., 49 (2010) 9012–9025.CrossRefGoogle Scholar
  22. [22]
    D. D. Davieau and P. A. Erickson, The effect of geometry on reactor performance in the steam-reformation process, Int. J. Power Sources, 32 (2007) 1192–1200.Google Scholar
  23. [23]
    J. S. Lee, J. Seo, H. Y. Kim, J. T. Chung and S. S. Yoon, Effects of combustion parameters on reforming performance of a steam-methane reformer, Fuel, 111 (2013).Google Scholar
  24. [24]
    M. Behnam, A. G. Dixon, P. M. Wright, M. Nijemeisland and E. H. Stitt, Comparison of CFD simulations to experiment under methane steam reforming reacting conditions, Chem. Eng. J., 207–208 (2012) 690–700.CrossRefGoogle Scholar
  25. [25]
    Y. Matsumura and T. Nakamori, Reaction temperature, Appl. Catal. A., 258 (2004) 107–114.CrossRefGoogle Scholar
  26. [26]
    E. Kikuchi, Y. Nemoto, M. Kajuwara, S. Uemiya and T. Kojima, Steam reforming of methane in membrane reactors: comparison of electroless-plating and CVD membranes and catalyst packing modes, Catal. Today, 56 (2000) 75–81.CrossRefGoogle Scholar
  27. [27]
    J. Xu and G. F. Froment, Methane steam reforming, methanation and water-gas shift: I. intrinsic kinetics, AIChE. J., 35 (1989) 88–96.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Taehyun Jo
    • 1
  • Bonchan Koo
    • 2
  • Yonghan Lee
    • 1
  • Hyunkyoo So
    • 1
  • Dohyung Lee
    • 1
  1. 1.Department of Mechanical Design EngineeringHanyang UniversitySeoulKorea
  2. 2.Department of Mechanical EngineeringHanyang UniversitySeoulKorea

Personalised recommendations