Advertisement

Journal of Mechanical Science and Technology

, Volume 32, Issue 2, pp 539–547 | Cite as

Review of contact-resistance analysis in nano-material

Invited Review Paper
  • 229 Downloads

Abstract

Recently, investigating the unique electrical properties of low-dimensional (One- and two-dimensional) materials as alternatives to silicon has become popular among researchers. In order to observe the intrinsic properties and device performance, it is essential to elucidate the electron transport at the electrode/nanomaterial interface. This study reviews various current approaches used to evaluate the contact resistance of electronic devices based on the most representative low-dimensional nano-materials such as carbon nanotubes, nanowires, graphene and molybdenum disulfide. Various analytical factors that have generally not been considered in conventional electronics are introduced to define the contact resistance within the nano-meter scale. Additionally, a comparison of three different methods for determining the contact resistance to interpret experimental data is conducted. Finally, several attempted efforts to reduce the contact resistance are presented.

Keywords

CNTs Contact resistance Field-effect transistor Graphene Low-dimensional material MoS2 Nanowire Schottky barrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. H. Rhoderick, Metal-semiconductor contacts, IEE Proceedings I-Solid-State and Electron Devices, 129 (1) (1982) 1.CrossRefGoogle Scholar
  2. [2]
    W. Schottky, Zur halbleitertheorie der sperrschicht-und spitzengleichrichter, Zeitschrift für Physik, 113 (5) (1939) 367–414.CrossRefMATHGoogle Scholar
  3. [3]
    N. Z. Haron and S. Hamdioui, Why is CMOS scaling coming to an END?, 3rd International Design and Test Workshop, IEEE (2008) 98–103.Google Scholar
  4. [4]
    Y. B. Kim, Challenges for nanoscale MOSFETs and emerging nanoelectronics, Transactions on Electrical and Electronic Materials, 11 (3) (2010) 93–105.CrossRefGoogle Scholar
  5. [5]
    T. Skotnicki, J. A. Hutchby, T. J. King, H.-S. Wong and F. Boeuf, The end of CMOS scaling: Toward the introduction of new materials and structural changes to improve MOSFET performance, IEEE Circuits and Devices Magazine, 21 (1) (2005) 16–26.CrossRefGoogle Scholar
  6. [6]
    A. D. Franklin, Nanomaterials in transistors: From high-performance to thin-film applications, Science, 349 (6249) (2015) aab2750.CrossRefGoogle Scholar
  7. [7]
    Y. Sun, H. Yu, N. Singh, K. Leong, E. Gnani, G. Baccarani, G. Lo and D. Kwong, Vertical-Si-nanowire-based nonvolatile memory devices with improved performance and reduced process complexity, IEEE Transactions on Electron Devices, 58 (5) (2011) 1329–1335.CrossRefGoogle Scholar
  8. [8]
    S. Das, H. Y. Chen, A. V. Penumatcha and J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts, Nano Letters, 13 (1) (2012) 100–105.CrossRefGoogle Scholar
  9. [9]
    I. Popov, G. Seifert and D. Tománek, Designing electrical contacts to MoS2 monolayers: A computational study, Physical Review Letters, 108 (15) (2012) 156802.CrossRefGoogle Scholar
  10. [10]
    J. R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo and R. K. Kawakami, Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts, Nano Letters, 13 (7) (2013) 3106–3110.CrossRefGoogle Scholar
  11. [11]
    F. Ahmed, M. S. Choi, X. Liu and W. J. Yoo, Carrier transport at the metal–MoS2 interface, Nanoscale, 7 (20) (2015) 9222–9228.CrossRefGoogle Scholar
  12. [12]
    S. M. Sze and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons (2006).CrossRefGoogle Scholar
  13. [13]
    D. K. Schroder and D. L. Meier, Solar cell contact resistance—A review, IEEE Transactions on Electron Devices, 31 (5) (1984) 637–647.CrossRefGoogle Scholar
  14. [14]
    A. Allain, J. Kang, K. Banerjee and A. Kis, Electrical contacts to two-dimensional semiconductors, Nature Materials, 14 (12) (2015) 1195.CrossRefGoogle Scholar
  15. [15]
    J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature (London), 391 (1998) 59.CrossRefGoogle Scholar
  16. [16]
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. Geerligs and C. Dekker, Individual single-wall carbon nanotubes as quantum wires, Nature, 386 (6624) (1997) 474–477.CrossRefGoogle Scholar
  17. [17]
    S. C. Lim, J. H. Jang, D. J, Bae, G. H. Han, S. Lee, I. S. Yeo and Y. H. Lee, Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability, Applied Physics Letters, 95 (26) (2009) 264103.CrossRefGoogle Scholar
  18. [18]
    R. Boston, Z. Schnepp, Y. Nemoto, Y. Sakka and S. R. Hall, In Situ TEM observation of a microcrucible mechanism of nanowire growth, Science, 344 (6184) (2014) 623–626.CrossRefGoogle Scholar
  19. [19]
    S. Mohney, Y. Wang, M. A. Cabassi, K. Lew, S. Dey, J. Redwing and T. Mayer, Measuring the specific contact resistance of contacts to semiconductor nanowires, Solid-State Electronics, 49 (2) (2005) 227–232.CrossRefGoogle Scholar
  20. [20]
    K. Nagashio, T. Nishimura, K. Kita and A. Toriumi, Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance, 2009 IEEE International Electron Devices Meeting (IEDM), IEEE (2009) 1–4.Google Scholar
  21. [21]
    F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu and P. Avouris, The origins and limits of metal-graphene junction resistance, Nature Nanotechnology, 6 (3) (2011) 179–184.CrossRefGoogle Scholar
  22. [22]
    H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu and S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Letters, 12 (7) (2012) 3695–3700.CrossRefGoogle Scholar
  23. [23]
    H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong and T. Palacios, Integrated circuits based on bilayer MoS2 transistors, Nano Letters, 12 (9) (2012) 4674–4680.CrossRefGoogle Scholar
  24. [24]
    Y. Yoon, K. Ganapathi and S. Salahuddin, How good can monolayer MoS2 transistors be?, Nano Letters, 11 (9) (2011) 3768–3773.CrossRefGoogle Scholar
  25. [25]
    C. Gong, L. Colombo, R. M. Wallace and K. Cho, The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces, Nano Letters, 14 (4) (2014) 1714–1720.CrossRefGoogle Scholar
  26. [26]
    J. Kang, W. Liu, D. Sarkar, D. Jena and K. Banerjee, Computational study of metal contacts to monolayer transitionmetal dichalcogenide semiconductors, Physical Review X, 4 (3) (2014) 031005.CrossRefGoogle Scholar
  27. [27]
    Q. Cao, S. J. Han, G. S. Tulevski, A. D. Franklin and W. Haensch, Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed singlewalled carbon nanotubes, ACS Nano, 6 (7) (2012) 6471–6477.CrossRefGoogle Scholar
  28. [28]
    H. Liu, A. T. Neal and P. D. Ye, Channel length scaling of MoS2 MOSFETs, ACS Nano, 6 (10) (2012) 8563–8569.CrossRefGoogle Scholar
  29. [29]
    R. de Picciotto, H. Stormer, L. Pfeiffer, K. Baldwin and K. West, Four-terminal resistance of a ballistic quantum wire, Nature, 411 (6833) (2001) 51.CrossRefGoogle Scholar
  30. [30]
    J. Na, M. Shin, M. K. Joo, J. Huh, Y. J. Kim, H. J. Choi, J. H. Shim and G. T. Kim, Separation of interlayer resistance in multilayer MoS2 field-effect transistors, Applied Physics Letters, 104 (23) (2014) 233502.CrossRefGoogle Scholar
  31. [31]
    H. Y. Chang, W. Zhu and D. Akinwande, On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals, Applied Physics Letters, 104 (11) (2014) 113504.CrossRefGoogle Scholar
  32. [32]
    D. K. Schroder, Semiconductor material and device characterization, John Wiley & Sons (2006).Google Scholar
  33. [33]
    B. İşcan, Strength of lap joints with embedded cover plate, Journal of Mechanical Science and Technology, 29 (5) (2015) 2105–2110.CrossRefGoogle Scholar
  34. [34]
    R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite and M. Chhowalla, Phase-engineered lowresistance contacts for ultrathin MoS2 transistors, Nature Materials, 13 (12) (2014) 1128.CrossRefGoogle Scholar
  35. [35]
    J. Kang, W. Liu and K. Banerjee, High-performance MoS2 transistors with low-resistance molybdenum contacts, Applied Physics Letters, 104 (9) (2014) 093106.CrossRefGoogle Scholar
  36. [36]
    H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo and A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Letters, 13 (5) (2013) 1991–1995.CrossRefGoogle Scholar
  37. [37]
    H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou and P. D. Ye, Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers, ACS Nano, 8 (1) (2013) 1031–1038.CrossRefGoogle Scholar
  38. [38]
    D. Kiriya, M. Tosun, P. Zhao, J. S. Kang and A. Javey, Airstable surface charge transfer doping of MoS2 by benzyl viologen, Journal of the American Chemical Society, 136 (22) (2014) 7853–7856.CrossRefGoogle Scholar
  39. [39]
    M. M. Perera, M. W. Lin, H. J. Chuang, B. P. Chamlagain, C. Wang, X. Tan, M. M. C. Cheng, D. Tománek and Z. Zhou, Improved carrier mobility in few-layer MoS2 fieldeffect transistors with ionic-liquid gating, Acs Nano, 7 (5) (2013) 4449–4458.CrossRefGoogle Scholar
  40. [40]
    J. Wang, Q. Yao, C. W. Huang, X. Zou, L. Liao, S. Chen, Z. Fan, K. Zhang, W. Wu and X. Xiao, High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer, Advanced Materials, 28 (37) (2016) 8302–8308.CrossRefGoogle Scholar
  41. [41]
    S. M. Song, J. K. Park, O. J. Sul and B. J. Cho, Determination of work function of graphene under a metal electrode and its role in contact resistance, Nano Letters, 12 (8) (2012) 3887–3892.CrossRefGoogle Scholar
  42. [42]
    E. Rashba, Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem, Physical Review B, 62 (24) (2000) R16267.CrossRefGoogle Scholar
  43. [43]
    G. Schmidt, D. Ferrand, L. Molenkamp, A. Filip and B. Van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Physical Review B, 62 (8) (2000) R4790.CrossRefGoogle Scholar
  44. [44]
    S. Das and J. Appenzeller, Where does the current flow in two-dimensional layered systems?, Nano Letters, 13 (7) (2013) 3396–3402.CrossRefGoogle Scholar
  45. [45]
    M. S. Fuhrer and J. Hone, Measurement of mobility in dual-gated MoS2 transistors, Nature Nanotechnology, 8 (3) (2013) 146–147.CrossRefGoogle Scholar
  46. [46]
    X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee, D. A. Chenet, X. Zhang, L. Wang and F. Ye, Multiterminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nature Nanotechnology, 10 (6) (2015) 534–540.CrossRefGoogle Scholar
  47. [47]
    Y. Liu, H. Wu, H. C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo and N. O. Weiss, Toward barrier free contact to molybdenum disulfide using graphene electrodes, Nano Letters, 15 (5) (2015) 3030–3034.CrossRefGoogle Scholar
  48. [48]
    Y. Du, L. Yang, J. Zhang, H. Liu, K. Majumdar, P. D. Kirsch and D. Y. Peide, MoS2 field-effect transistors with graphene/metal heterocontacts, IEEE Electron Device Letters, 35 (5) (2014) 599–601.CrossRefGoogle Scholar
  49. [49]
    B. Radisavljevic, A. Radenovic, J. Brivio, I. V. Giacometti and A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, 6 (3) (2011) 147–150.CrossRefGoogle Scholar
  50. [50]
    K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Physical Review Letters, 105 (13) (2010) 136805.CrossRefGoogle Scholar
  51. [51]
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Photoluminescence from chemically exfoliated MoS2, Nano Letters, 11 (12) (2011) 5111–5116.CrossRefGoogle Scholar
  52. [52]
    B. Radisavljevic, M. B. Whitwick and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano, 11 (12) (2011) 5111–5116.Google Scholar
  53. [53]
    M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape and P. Barbara, Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions, Scientific Reports, 3 (2013).Google Scholar
  54. [54]
    X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang and A. L. Hsu, Parallel stitching of 2D materials, Advanced Materials, 28 (12) (2016) 2322–2329.CrossRefGoogle Scholar
  55. [55]
    M. H. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie, C. J. Kim, D. A. Muller, D. C. Ralph and J. Park, Atomically-thin ohmic edge contacts between two-dimensional materials, ACS Nano, 10 (6) (2016) 6392–6399.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringYonsei UniversityKorea
  2. 2.Department of Computer EngineeringGachon UniversityGyeonggi-doKorea

Personalised recommendations