Analysis of Center Frequency Effect on Damping Parameters Estimation Using Continuous Wavelet Transform

Abstract

This paper aims to improve the use of continuous wavelet transform (CWT) to identify the damping parameters from the free decay responses of structures. Numerical response functions (impulse response functions) were simulated with lower frequencies and higher damping parameters using the Hilbert Transform, and the damping parameters were estimated by extracting wavelet coefficients that corresponded to the frequency components of these numerical response functions. Numerical simulations were also performed on single-, separated- and closed-mode systems to analyze the effect of the center frequency of the mother wavelet on the estimation of system damping parameters. Experiments were performed on a two-span H-Beam. This study focuses on the damping parameter estimation errors for the center frequency setting of the mother wavelet function. The reliability of the estimated damping parameters can be improved by selecting the center frequencies of the mother wavelet function so that each corresponding scale is localized at half of the total scale.

This is a preview of subscription content, access via your institution.

References

  1. Berkshire EH (1981) Structural dynamics: Theory and computation by Mario Paz. The Mathematical Gazette 65(431):67–68, DOI: https://doi.org/10.2307/3617959

    Article  Google Scholar 

  2. Chui CK (1994) Wavelet analysis and its applications. Wavelet Analysis and Its Applications 4:373, DOI: https://doi.org/10.1016/B978-0-08-052087-2.50022-0

    Article  Google Scholar 

  3. Curadelli RO, Riera JD, Ambrosini D, Amani MG (2008) Damage detection by means of structural damping identification. Engineering Structures 30:3497–3504, DOI: https://doi.org/10.1016/j.engstruct.2008.05.024

    Article  Google Scholar 

  4. Dziedziech K, Staszewski WJ, Uhl T (2015) Wavelet-based modal analysis for time-variant systems. Mechanical Systems and Signal Processing 50–51:323–337, DOI: https://doi.org/10.1016/j.ymssp.2014.05.003

    Article  Google Scholar 

  5. Eeldman M (1997) Non-linear free vibration identification via the hilbert transform. Journal of Sound Vibration 208:475–489, DOI: https://doi.org/10.1006/jsvi.1997.1182

    MathSciNet  Article  Google Scholar 

  6. Gaviria CA, Montejo LA (2018) Optimal wavelet parameters for system identification of civil engineering structures. Earthquake Spectra 34:197–216, DOI: https://doi.org/10.1193/092016EQS154M

    Article  Google Scholar 

  7. Huang CS, Su WC (2007) Identification of modal parameters of a time invariant linear system by continuous wavelet transformation. Mechanical Systems and Signal Processing 21:1642–1664, DOI: https://doi.org/10.1016/j.ymssp.2006.07.011

    Article  Google Scholar 

  8. Hur K, Santoso S (2009) Estimation of system damping parameters using analytic wavelet transforms. IEEE Transaction on Power Delivery 24:1302–1309, DOI: https://doi.org/10.1109/TPWRD.2008.2002970

    Article  Google Scholar 

  9. Iatsenko D, McClintock PVE, Stefanovska A (2015) Linear and synchrosqueezed time-frequency representations revisited: Overview, standards of use, resolution, reconstruction, concentration, and algorithms. Digital Signal Processing: A Review Journal 42:1–26, DOI: https://doi.org/10.1016/j.dsp.2015.03.004

    MathSciNet  Article  Google Scholar 

  10. Kaiser G (2011) A friendly guide to wavelets. Birkhäuser Basel, Basel, Switzerland, DOI: https://doi.org/10.1007/978-0-8176-8111-1

    Google Scholar 

  11. Kijewski T, Kareem A (2003) Wavelet transforms for system identification in civil engineering. Computer-Aided Civil and Infrastructure Engineering 18:339–355, DOI: https://doi.org/10.1111/1467-8667.t01-1-00312

    Article  Google Scholar 

  12. Le T-P (2017) Use of the morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses. Mechanical Systems and Signal Processing 95:488–505, DOI: https://doi.org/10.1016/j.ymssp.2017.03.045

    Article  Google Scholar 

  13. Le T-P, Argoul P (2004) Continuous wavelet transform for modal identification using free decay response. Journal of Sound Vibration 277:73–100, DOI: https://doi.org/10.1016/j.jsv.2003.08.049

    Article  Google Scholar 

  14. Le T-P, Paultre P (2012) Modal identification based on continuous wavelet transform and ambient excitation tests. Journal of Sound Vibration 331:2023–2037, DOI: https://doi.org/10.1016/j.jsv.2012.01.018

    Article  Google Scholar 

  15. Mallat S (2009) A wavelet tour of signal processing. Academic Press, Cambridge, MA, USA, DOI: https://doi.org/10.1016/B978-0-12-374370-1.X0001-8

    Google Scholar 

  16. Mihalec M, Slavič J, Boltežar M (2016) Synchrosqueezed wavelet transform for damping identification. Mechanical Systems and Signal Processing 80:324–334, DOI: https://doi.org/10.1016/j.ymssp.2016.05.005

    Article  Google Scholar 

  17. Qu H, Li T, Wang R, Li J, Guan Z, Chen G (2021) Application of adaptive wavelet transform based multiple analytical mode decomposition for damage progression identification of Cable-Stayed bridge via shake table test. Mechanical Systems and Signal Processing 149, DOI: https://doi.org/10.1016/j.ymssp.2020.107055

  18. Sarparast H, Ashory MR, Hajiazizi M, Afzali M, Khatibi MM (2014) Estimation of modal parameters for structurally damped systems using wavelet transform. European Journal of Mechanics — A/Solids 47:82–91, DOI: https://doi.org/10.1016/j.euromechsol.2014.02.018

    MathSciNet  Article  Google Scholar 

  19. Slavič J, Simonovski I, Boltežar M (2003) Damping identification using a continuous wavelet transform: Application to real data. Journal of Sound Vibration 262:291–307, DOI: https://doi.org/10.1016/S0022-460X(02)01032-5

    Article  Google Scholar 

  20. Su WC, Huang CS, Chen CH, Liu CY, Huang HC, Le QT (2014a) Identifying the modal parameters of a structure from ambient vibration data via the stationary wavelet packet. Computer-Aided Civil and Infrastructure Engineering 29:738–757, DOI: https://doi.org/10.1111/mice.12115

    Article  Google Scholar 

  21. Su WC, Liu CY, Huang CS (2014b) Identification of instantaneous modal parameter of time-varying systems via a wavelet-based approach and its application. Computer-Aided Civil and Infrastructure Engineering 29:279–298, DOI: https://doi.org/10.1111/mice.12037

    Article  Google Scholar 

  22. Tarinejad R, Damadipour M (2014) Modal identification of structures by a novel approach based on EDD-wavelet method. Journal of Sound Vibration 333:1024–1045, DOI: https://doi.org/10.1016/j.jsv.2013.09.038

    Article  Google Scholar 

  23. Tarinejad R, Damadipour M (2016) Extended EDD-WT method based on correcting the errors due to non-synchronous sensing of sensors. Mechanical Systems and Signal Processing 72–73:547–566, DOI: https://doi.org/10.1016/j.ymssp.2015.10.032

    Article  Google Scholar 

  24. Tomac I, Lozina D, Sedlar (2017) Extended Morlet-Wave damping identification method. International Journal of Mechanical Sciences 127:31–40, DOI: https://doi.org/10.1016/j.ijmecsci.2017.01.013

    Article  Google Scholar 

  25. Wang S, Zhao W, Zhang G, Xu H, Du Y (2021) Identification of structural parameters from free vibration data using Gabor wavelet transform. Mechanical Systems and Signal Processing 147, DOI: https://doi.org/10.1016/j.ymssp.2020.107122

  26. Yu D, Jianxun Z (2012) Continuous wavelet transform-based estimation of modal parameters with scale selection. 2012 IEEE international conference on mechatronics and automation, August 5–8, Chengdu, China, 1445–1450, DOI: https://doi.org/10.1109/ICMA.2012.6284349

  27. Zhang M, Huang X, Li Y, Sun H, Zhang J, Huang B (2020) Improved continuous wavelet transform for modal parameter identification of long-span bridges. Shock and Vibration 2020, DOI: https://doi.org/10.1155/2020/4360184

Download references

Acknowledgments

Not Applicable

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seok Min Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S.M. Analysis of Center Frequency Effect on Damping Parameters Estimation Using Continuous Wavelet Transform. KSCE J Civ Eng (2021). https://doi.org/10.1007/s12205-021-1255-7

Download citation

Keywords

  • Damping parameters
  • Wavelet center frequency
  • Continuous wavelet transform
  • Free vibration
  • Total scales