Numerical and Experimental Study on Strain Rate Effect of Ordinary Concrete under Low Strain Rate

Abstract

The strain rate effect of ordinary concrete is researched through the particle discrete element method. A random construction method of three-dimensional aggregate is used, and the numerical sample consistent with the experimental specimen is constructed using particle flow code. Moreover, the simulation method that can properly reflect the strain rate effect with the parallel bond model is proposed. The meso-parameters are calibrated by triaxial compression test. Based on the proposed simulation method and calibrated meso-parameters, the numerical tests of direct tension, uniaxial compression, and cyclic loading under strain rates from 10−5 s−1 to 10−1 s−1 are carried out. The results show that the strain rate effect of concrete can be simulated with particle flow code by assuming that the micromechanical properties of materials vary with the strain rate, and the strength and failure characteristics of numerical samples under different strain rates are described well by the proposed method. In addition, the different mechanical responses of the samples to the strain rate in the compression test and the tensile test are obtained, and the changes of mechanical parameters and damage degree with strain rates in the cyclic loading test are also successfully simulated. This study can provide a feasible numerical method for the follow-up research of dynamic mechanical behavior of concrete and offer theoretical guidance for the stability assessment of concrete engineering.

This is a preview of subscription content, access via your institution.

References

  1. Al-Salloum Y, Almusallam T, Ibrahim SM, Abbas H, Alsayed S (2015) Rate dependent behavior and modeling of concrete based on SHPB experiments. Cement and Concrete Composites 55:34–44, DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.011

    Article  Google Scholar 

  2. Arulrajah A, Baghban H, Narsilio GA, Horpibulsuk S, Leong M (2020) Discrete element analysis of recycled concrete aggregate responses during repeated load triaxial testing. Transportation Geotechnics 23:100356, DOI: https://doi.org/10.1016/j.trgeo.2020.100356

    Article  Google Scholar 

  3. Beckmann B, Schicktanz K, Reischl D, Curbach M (2012) DEM simulation of concrete fracture and crack evolution. Structural Concrete 13(4):213–220, DOI: https://doi.org/10.1002/suco.201100036

    Article  Google Scholar 

  4. Bischoff PH, Perry SH (1991) Compressive behaviour of concrete at high strain rates. Materials and Structures 24(6):425–450, DOI: https://doi.org/10.1007/bf02472016

    Article  Google Scholar 

  5. CEB-FIP (1990) Model code for concrete structures. Comite Euro-International du Beton, Lausanne, Switzerland

    Google Scholar 

  6. Chen XD, Bu JW, Xu LY (2016) Effect of strain rate on post-peak cyclic behavior of concrete in direct tension. Construction and Building Materials 124:746–754, DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.012

    Article  Google Scholar 

  7. Chen J, Liu HB, Jia YD, Ju Y, (2005) Review of study and application of reactive powder concrete. Industrial Construction 35:663–667+672 (in Chinese)

    Google Scholar 

  8. Chen J, Pan T, Chen J, Huang X, Lu Y, (2012) Predicting the dynamic behavior of asphalt concrete using three-dimensional discrete element method. Journal of Wuhan University of Technology-Mater. Sci. Ed. 27(2):382–388, DOI: https://doi.org/10.1007/s11595-012-0470-y

    Article  Google Scholar 

  9. Chen J, Pan T, Huang X (2011) Numerical investigation into the stiffness anisotropy of asphalt concrete from a microstructural perspective. Construction and Building Materials 25(7):3059–3065, DOI: https://doi.org/10.1016/j.conbuildmat.2011.01.002

    Article  Google Scholar 

  10. Chen JQ, Wang H, Li L (2017a) Virtual testing of asphalt mixture with two-dimensional and three-dimensional random aggregate structures. International Journal of Pavement Engineering 18(9):824–836, DOI: https://doi.org/10.1080/10298436.2015.1066005

    Article  Google Scholar 

  11. Chen XD, Wu SX, Zhou JK, Chen YZ, Qin AP (2013) Effect of testing method and strain rate on stress-strain behavior of concrete. Journal of Materials in Civil Engineering 25(11):1752–1761, DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000732

    Article  Google Scholar 

  12. Chen XD, Xu LY, Shi DD, Chen YZ, Zhou W, Wang Q (2018) Experimental study on cyclic tensile behaviour of concrete under various strain rates. Magazine of Concrete Research 70(2):55–70, DOI: https://doi.org/10.1680/jmacr.17.00144

    Article  Google Scholar 

  13. Chen XD, Xu LY, Zhu Q (2017b) Mechanical behavior and damage evolution for concrete subjected to multiple impact loading. KSCE Journal of Civil Engineering 21(9):2351–2359, DOI: https://doi.org/10.1007/s12205-016-1143-8

    Article  Google Scholar 

  14. Cho N, Martin CD, Sego DC (2007) A clumped particle model for rock. International Journal of Rock Mechanics and Mining Sciences 44(7):997–1010, DOI: https://doi.org/10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  15. Cui W, Ji TZ, Li M, Wu XL (2017) Simulating the workability of fresh self-compacting concrete with random polyhedron aggregate based on DEM. Materials and Structures 50(1):92, DOI: https://doi.org/10.1617/s11527-016-0963-9

    Article  Google Scholar 

  16. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65, DOI: https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  17. Cundall PA, Hart RD (1992) Numerical modelling of discontinua. Engineering Computations 9(2):101–113, DOI: https://doi.org/10.1108/eb023851

    Article  Google Scholar 

  18. Cusatis G (2011) Strain-rate effects on concrete behavior. International Journal of Impact Engineering 38(4):162–170, DOI: https://doi.org/10.1016/j.ijimpeng.2010.10.030

    Article  Google Scholar 

  19. Deng ZP, Cheng H, Wang ZG, Zhu GH, Zhong HS (2016) Compressive behavior of the cellular concrete utilizing millimeter-size spherical saturated SAP under high strain-rate loading. Construction and Building Materials 119:96–106, DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.018

    Article  Google Scholar 

  20. Ding XB, Zhang LY (2014) A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models. International Journal of Rock Mechanics and Mining Sciences 69:111–119, DOI: https://doi.org/10.1016/j.ijrmms.2014.03.008

    Article  Google Scholar 

  21. Donze F, Magnier S-A, Daudeville L, Mariotti C, Davenne L (1999) Numerical study of compressive behavior of concrete at high strain rates. Journal of Engineering Mechanics 125:1154–1163, DOI: https://doi.org/10.1061/(ASCE)0733-9399(1999)125:10(1154)

    Article  Google Scholar 

  22. Eibl J, Schmidt-Hurtienne B (1999) Strain-rate-sensitive constitutive law for concrete. Journal of Engineering Mechanics 125(12):1411–1420, DOI: https://doi.org/10.1061/(ASCE)0733-9399(1999)125:12(1411)

    Article  Google Scholar 

  23. Elmer W, Taciroglu E, McMichael L (2012) Dynamic strength increase of plain concrete from high strain rate plasticity with shear dilation. International Journal of Impact Engineering 45:1–15, DOI: https://doi.org/10.1016/j.ijimpeng.2012.01.003

    Article  Google Scholar 

  24. Gu X, Zhang Q, Huang D, Yv Y, (2016) Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Engineering Fracture Mechanics 160:124–137, DOI: https://doi.org/10.1016/j.engfracmech.2016.04.005

    Article  Google Scholar 

  25. Guo J (2013) Fast determination of meso-level mechanical parameters of PFC models. International Journal of Mining Science & Technology 23(1):157–162, DOI: https://doi.org/10.1016/j.ijmst.2013.03.007

    Article  Google Scholar 

  26. Gurusideswar S, Shukla A, Jonnalagadda KN, Nanthagopalan P (2020) Tensile strength and failure of ultra-high performance concrete (UHPC) composition over a wide range of strain rates. Construction and Building Materials 258, DOI: https://doi.org/10.1016/j.conbuildmat.2020.119642

  27. Hao Y, Hao H, Jiang GP, Zhou Y, (2013) Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests. Cement and Concrete Research 52:63–70, DOI: https://doi.org/10.1016/j.cemconres.2013.05.008

    Article  Google Scholar 

  28. Hsieh Y-M, Li H-H, Huang T-H, Jeng F-S (2008) Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties-Revealed by bonded-particle model. Engineering Geology 99(1–2):1–10, DOI: https://doi.org/10.1016/j.enggeo.2008.01.017

    Article  Google Scholar 

  29. Jamadin A, Ibrahim Z, Jumaat MZ, Ab Wahab ES (2019) Effect of high-cyclic loads on dynamic response of reinforced concrete slabs. KSCE Journal of Civil Engineering 23(3):1293–1301, DOI: https://doi.org/10.1007/s12205-019-0889-1

    Article  Google Scholar 

  30. Jin L, Yu WX, Du XL, Yang WX (2020) Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: Influence of aggregate content and maximum aggregate size. Engineering Fracture Mechanics 230, DOI: https://doi.org/10.1016/j.engfracmech.2020.106979

  31. Ju Y, Liu HB, Sheng GH, Wang HJ (2010) Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts. Science China Technological Sciences 53:2435–2449, DOI: https://doi.org/10.1007/s11431-010-4061-x

    Article  Google Scholar 

  32. Khandelwal M, Ranjith PG (2013) Behaviour of brittle material in multiple loading rates under uniaxial compression. Geotechnical and Geological Engineering 31(4):1305–1315, DOI: https://doi.org/10.1007/s10706-013-9651-5

    Article  Google Scholar 

  33. Li M, Li H (2012) Effects of strain rate on reinforced concrete structure under seismic loading. Advances in Structural Engineering 15(3):461–475, DOI: https://doi.org/10.1260/1369-4332.15.3.461

    Article  Google Scholar 

  34. Liu P, Hu D, Wu Q, Liu X (2018) Sensitivity and uncertainty analysis of interfacial effect in SHPB tests for concrete-like materials. Construction and Building Materials 163:414–427, DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.118

    Article  Google Scholar 

  35. Liu HB, Li KL, Ju Y, Sheng GH, Feng L (2009) Mechanical characteristics and mechanism of explosive spalling in HSC/HPC at elevated temperatures. Concrete 7:11–14, DOI: https://doi.org/10.3969/j.issn.1002-3550.2009.07.004 (in Chinese)

    Google Scholar 

  36. Liu LG, Ou ZC, Duan ZP, Liu Y, Huang FL (2011) Interaction between crack and aggregate in concrete under dynamic tensile loading and strain-rate effect on material strength. Advanced Materials Research 243–249:5923–5929, DOI: https://doi.org/10.4028/www.scientific.net/AMR.243-249.5923

    Article  Google Scholar 

  37. Lu J, Zhu K, Tian L, Guo L (2017) Dynamic compressive strength of concrete damaged by fatigue loading and freeze-thaw cycling. Construction and Building Materials 152:847–855, DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.046

    Article  Google Scholar 

  38. Ma GW, Wang XJ, Ren F (2011) Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method. International Journal of Rock Mechanics and Mining Sciences 48(3):353–363, DOI: https://doi.org/10.1016/j.ijrmms.2011.02.001

    Article  Google Scholar 

  39. Mechtcherine V, Gram A, Krenzer K, Schwabe JH, Shyshko S, Roussel N (2014) Simulation of fresh concrete flow using Discrete Element Method (DEM): Theory and applications. Materials and Structures 47(4):615–630, DOI: https://doi.org/10.1617/s11527-013-0084-7

    Article  Google Scholar 

  40. Muhit IB, Shim CS, Yun NR, Park SD (2019) Effect of strain rate on impact behavior of aluminum foam. KSCE Journal of Civil Engineering 23(11):4852–4863, DOI: https://doi.org/10.1007/s12205-019-5827-8

    Article  Google Scholar 

  41. Nitka M, Tejchman J (2015) Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granular Matter 17(1):145–164, DOI: https://doi.org/10.1007/s10035-015-0546-4

    Article  Google Scholar 

  42. Ožbolt J, Rah KK, Meštrović D (2006) Influence of loading rate on concrete cone failure. International Journal of Fracture 139(2):239–252, DOI: https://doi.org/10.1007/s10704-006-0041-3

    Article  Google Scholar 

  43. Potyondy DO (2007) Simulating stress corrosion with a bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences 44(5):677–691, DOI: https://doi.org/10.1016/j.ijrmms.2006.10.002

    Article  Google Scholar 

  44. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences 41(8):1329–1364, DOI: https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  45. Pyo S, Wille K, El-Tawil S, Naaman AE (2015) Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension. Cement and Concrete Composites 56:15–24, DOI: https://doi.org/10.1016/j.cemconcomp.2014.10.002

    Article  Google Scholar 

  46. Rackl M, Hanley KJ (2017) A methodical calibration procedure for discrete element models. Powder Technology 307:73–83, DOI: https://doi.org/10.1016/j.powtec.2016.11.048

    Article  Google Scholar 

  47. Sarfarazi V, Ghazvinian A, Schubert W, Blumel M, Nejati HR (2014) Numerical simulation of the process of fracture of echelon rock joints. Rock Mechanics and Rock Engineering 47(4):1355–1371, DOI: https://doi.org/10.1007/s00603-013-0450-3

    Article  Google Scholar 

  48. Savinykh AS, Garkushin GV, Kanel GI, Razorenov SV (2018) Method of measurement of the dynamic strength of concrete under explosive loading. International Journal of Fracture 209(1):109–115, DOI: https://doi.org/10.1007/s10704-017-0244-9

    Article  Google Scholar 

  49. Sheng GH, Liu HB, Wang HJ, Wang JB, Ju Y, (2009) Study on impact property of reactive powder concrete. Concrete 11:23–26+30, DOI: https://doi.org/10.3969/j.issn.1002-3550.2009.11.008 (in Chinese)

    Google Scholar 

  50. Shi C, Yang W, Yang J, Chen X (2019) Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code. Granular Matter 21(2):1–13, DOI: https://doi.org/10.1007/s10035-019-0889-3

    Article  Google Scholar 

  51. Skarżyński Ł, Nitka M, Tejchman J (2015) Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray μCT images of internal structure. Engineering Fracture Mechanics 147:13–35, DOI: https://doi.org/10.1016/j.engfracmech.2015.08.010

    Article  Google Scholar 

  52. Tran VT, Donzé FV, Marin P (2011) A discrete element model of concrete under high triaxial loading. Cement and Concrete Composites 33(9):936–948, DOI: https://doi.org/10.1016/j.cemconcomp.2011.01.003

    Article  Google Scholar 

  53. Wang SS, Zhang MH, Quek ST (2012) Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading. Construction and Building Materials 31:1–11, DOI: https://doi.org/10.1016/j.conbuildmat.2011.12.083

    Article  Google Scholar 

  54. Wang CL, Zhang CS, Zhao XD (2018) Application of similitude rules in calibrating microparameters of particle mechanics models. KSCE Journal of Civil Engineering 22(10):3791–3801, DOI: https://doi.org/10.1007/s12205-018-1960-z

    Article  Google Scholar 

  55. Wu SX, Chen XD, Zhou JK (2012) Influence of strain rate and water content on mechanical behavior of dam concrete. Construction and Building Materials 36:448–457, DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.046

    Article  Google Scholar 

  56. Xiao S, Li H (2011) Experimental study of biaxial compressive damage behaviour of concrete at different strain rates. Materials Research Innovations 15:S266–S269, DOI: https://doi.org/10.1179/143307511x12858957673914

    Article  Google Scholar 

  57. Xiong B, Demartino C, Xiao Y, (2019) High-strain rate compressive behavior of CFRP confined concrete: Large diameter SHPB tests. Construction and Building Materials 201:484–501, DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.144

    Article  Google Scholar 

  58. Xu B, Bompa DV, Elghazouli AY (2020a) Cyclic stress-strain rate-dependent response of rubberised concrete. Construction and Building Materials 254, DOI: https://doi.org/10.1016/j.conbuildmat.2020.119253

  59. Xu S, Shan J, Zhang L, Zhou L, Gao G, Hu S, Wang P (2020b) Dynamic compression behaviors of concrete under true triaxial confinement: An experimental technique. Mechanics of Materials 140:103220, DOI: https://doi.org/10.1016/j.mechmat.2019.103220

    Article  Google Scholar 

  60. Yang G, Chen YM, Gao DQ (2010) PFC simulation on shaking table concrete-faced rockfill dam model test. Advanced Materials Research 163–167:4208–4212, DOI: https://doi.org/10.4028/www.scientific.net/AMR.163-167.4208

    Article  Google Scholar 

  61. Yang G, Chen XD, Guo SS, Xuan WH (2019a) Dynamic mechanical performance of self-compacting concrete containing crumb rubber under high strain rates. KSCE Journal of Civil Engineering 23(8):3669–3681, DOI: https://doi.org/10.1007/s12205-019-0024-3

    Article  Google Scholar 

  62. Yang L, Jiang YJ, Li B, Li SC, Wang G (2013) Estimation of dynamic behaviors of bedrock foundation subjected to seismic loads based on FEM and DEM simulations. KSCE Journal of Civil Engineering 17(2):342–350, DOI: https://doi.org/10.1007/s12205-013-1541-0

    Article  Google Scholar 

  63. Yang BD, Jiao Y, Lei ST (2006) A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Engineering Computations 23(5–6):607–631, DOI: https://doi.org/10.1108/02644400610680333

    MATH  Article  Google Scholar 

  64. Yang JX, Shi C, Yang WK, Chen X, Zhang YP (2019b) Numerical simulation of column charge explosive in rock masses with particle flow code. Granular Matter 21(4), DOI: https://doi.org/10.1007/s10035-019-0950-2

  65. Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. International Journal of Rock Mechanics and Mining Sciences 44(6):871–889, DOI: https://doi.org/10.1016/j.ijrmms.2007.01.004

    Article  Google Scholar 

  66. Zeng S, Ren X, Li J (2013) Triaxial behavior of concrete subjected to dynamic compression. Journal of Structural Engineering 139(9): 1582–1592, DOI: https://doi.org/10.1061/(asce)st.1943-541x.0000686

    Article  Google Scholar 

  67. Zhang YL, Liu ZB, Shi C, Shao JF (2017a) Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach. Rock Mechanics and Rock Engineering 51(4):1173–1191, DOI: https://doi.org/10.1007/s00603-017-1385-x

    Article  Google Scholar 

  68. Zhang X-P, Wong LNY (2014) Choosing a proper loading rate for bonded-particle model of intact rock. International Journal of Fracture 189(2):163–179, DOI: https://doi.org/10.1007/s10704-014-9968-y

    Article  Google Scholar 

  69. Zhang Q, Xu WY, Liu QY, Shen JL, Yan L (2017b) Numerical investigations on mechanical characteristics and failure mechanism of outwash deposits based on random meso-structures using discrete element method. Journal of Central South University 24(12):2894–2905, DOI: https://doi.org/10.1007/s11771-017-3703-6

    Article  Google Scholar 

  70. Zhou XQ, Xia Y, (2011) Random aggregate generation and mesoscale modeling of concrete under high strain rate compression. Applied Mechanics and Materials 71–78:733–736, DOI: https://doi.org/10.4028/www.scientific.net/AMM.71-78.733

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the [National Key R&D Program of China] under Grant [number 2018YFC1508501]; [National Natural Science Foundation of China] under Grant [numbers 41831278, 51679071].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chong Shi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Shi, C., Zhang, YL. et al. Numerical and Experimental Study on Strain Rate Effect of Ordinary Concrete under Low Strain Rate. KSCE J Civ Eng (2021). https://doi.org/10.1007/s12205-021-0969-x

Download citation

Keywords

  • Strain rate effect
  • Ordinary concrete
  • Discrete element method
  • Bonded particle model
  • Dynamic stress-strain response
  • Dynamic increase factor