Development of a PCA-Based Vulnerability and Copula-Based Hazard Analysis for Assessing Regional Drought Risk

Abstract

Vulnerability and hazard are terms that are generally applied to drought risk assessment. Vulnerability can be defined as the capacity of a region to cope with and resist the impacts of natural hazards, while hazard can be defined as the likelihood of a natural or human-induced physical event. In this study, principal component analysis (PCA) was used to generate an aggregate drought vulnerability index (DVI) using multiple socio-economic indicators and copula-based drought frequency analysis was performed to calculate a drought hazard index (DHI) considering meteorological drought occurrence patterns. Finally, regional drought risk was evaluated by combining the DVI and DHI among cities within the Chungcheong province, South Korea. Based on the drought risk index (DRI), Jecheon-si (DRI = 0.50) and Gongju-si (DRI = 0.65) were identified as the most hazardous cities in Chungcheongbuk-do and Chungcheongnam-do, respectively. The overall process of drought risk assessment developed in this study is useful for planning drought management and mitigation at the local level.

This is a preview of subscription content, access via your institution.

References

  1. Abson DJ, Dougill AJ, Stringer LC (2012) Using principal component analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Applied Geography 35(1–2):515–524, DOI: https://doi.org/10.1016/j.apgeog.2012.08.004

    Article  Google Scholar 

  2. Adger WN (1999) Social vulnerability to climate change and extremes in coastal Vietnam. World Development 27(2):249–269, DOI: https://doi.org/10.1016/S0305-750X(98)00136-3

    Article  Google Scholar 

  3. Belal A-A, El-Ramady HR, Mohamed ES, Saleh AM (2014) Drought risk assessment using remote sensing and GIS techniques. Arabian Journal of Geosciences 7(1):35–53, DOI: https://doi.org/10.1007/s12517-012-0707-2

    Article  Google Scholar 

  4. Bogardi J, Birkmann J (2004) Vulnerability assessment: The first step towards sustainable risk reduction. In: Malzahn D, Plapp T (eds) Disaster and society — From hazard assessment to risk reduction. Logos Verlag Berlin, Berlin, Germany, 75–82

    Google Scholar 

  5. Carrão H, Naumann G, Barbosa P (2016) Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change 39:108–124, DOI: https://doi.org/10.1016/j.gloenvcha.2016.04.012

    Article  Google Scholar 

  6. Chen L, Singh VP, Guo S, Mishra AK, Guo J (2013) Drought analysis using copulas. Journal of Hydrologic Engineering 18(7):797–808, DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000697

    Article  Google Scholar 

  7. Cherchye L, Moesen W, Rogge N, Van Puyenbroeck T, Saisana M, Saltelli A, Liska R, Tarantola S (2008) Creating composite indicators with DEA and robustness analysis: The case of the technology achievement index. Journal of Operational Research Society 59(2):239–251, DOI: https://doi.org/10.1057/palgrave.jors.2602445

    Article  Google Scholar 

  8. Cutter SL (1996) Vulnerability to environmental hazards. Progress in Human Geography 20(4):529–539, DOI: https://doi.org/10.1177/030913259602000407

    Article  Google Scholar 

  9. Cutter SL, Barnes L, Berry M, Burton C, Evans E, Tate E, Webb J (2008) A place-based model for understanding community resilience to natural disasters. Global Environmental Change 18(4):598–606, DOI: https://doi.org/10.1016/j.gloenvcha.2008.07.013

    Article  Google Scholar 

  10. Dabanli I (2018) Drought hazard, vulnerability, and risk assessment in Turkey. Arabian Journal of Geosciences 11(18):538–549, DOI: https://doi.org/10.1007/s12517-018-3867-x

    Article  Google Scholar 

  11. Downing TE, Patwardhan A, Klein RJ, Mukhala E, Stephen L, Winograd M, Ziervogel G (2005) Assessing vulnerability for climate adaptation. In: Lim B, Spanger-Siegfried E, Burton I, Malone E, Huq S (eds) Adaptation policy frameworks for climate change: Developing strategies, policies and measures. Cambridge University Press, Cambridge, UK, 69–89

    Google Scholar 

  12. Ganguli P, Reddy MJ (2012) Risk assessment of droughts in Gujarat using bivariate copulas. Water Resources Management 26(11):3301–3327, DOI: https://doi.org/10.1007/s11269-012-0073-6

    Article  Google Scholar 

  13. Hinkel J (2011) “Indicators of vulnerability and adaptive capacity”: Towards a clarification of the science-policy interface. Global Environmental Change 21(1):198–208, DOI: https://doi.org/10.1016/j.gloenvcha.2010.08.002

    Article  Google Scholar 

  14. Intergovernmental Panel on Climate Change (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: Summary for policymakers. Cambridge University Press, Cambridge, UK, 1–19

    Google Scholar 

  15. Kim H, Park J, Yoo J, Kim T-W (2015) Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea. Journal of Hydro-Environment Research 9(1):28–35, DOI: https://doi.org/10.1016/j.jher.2013.07.003

    Article  Google Scholar 

  16. KOSIS (2019) Korea Statistical Information Service, Retrieved December 1, 2019, http://www.kosis.kr

  17. Li Y, Gu W, Cui W, Chang Z, Xu Y, (2015) Exploration of copula function use in crop meteorological drought risk analysis: A case study of winter wheat in Beijing, China. Natural Hazards 77(2): 1289–1303, DOI: https://doi.org/10.1007/s11069-015-1649-2

    Article  Google Scholar 

  18. Lin ML, Chu CM, Tsai BW (2011) Drought risk assessment in western Inner-Mongolia. International Journal of Environmental Research 5(1):139–148, DOI: https://doi.org/10.22059/IJER.2010.299

    Google Scholar 

  19. Liu A, Schisterman EF (2004) Principal component analysis. In: Chow S-C (ed) Encyclopedia of biopharmaceutical statistics. CPC Press, New York, NY, USA, 1796–1801

    Google Scholar 

  20. Mirakbari M, Ganji A, Fallah SR (2010) Regional bivariate frequency analysis of meteorological droughts. Journal of Hydrologic Engineering 15(12):985–1000, DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000271

    Article  Google Scholar 

  21. Pei W, Fu Q, Liu D, Li T, Cheng K (2016) Assessing agricultural drought vulnerability in the Sanjiang plain based on an improved projection pursuit model. Natural Hazards 82(1):683–701, DOI: https://doi.org/10.1007/s11069-016-2213-4

    Article  Google Scholar 

  22. Pelling M, Uitto J (2001) Small island developing states: Natural disaster vulnerability and global change. Environmental Hazards 3(2):49–62, DOI: https://doi.org/10.1016/S1464-2867(01)00018-3

    Article  Google Scholar 

  23. Rajsekhar D, Singh VP, Mishra AK (2015) Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: An information theory perspective. Journal of Geophysical Research: Atmospheres 120(13):6346–6378, DOI: https://doi.org/10.1002/2014JD022670

    Google Scholar 

  24. Rezaee Z, Fisher PF, Balzter H (2018) Geographical concepts of vulnerability analysis for risk assessments — A review. Revista Publicando 5(18):27–59

    Google Scholar 

  25. Saisana M, Saltelli A, Tarantola S (2005) Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society: Series A 168(2):307–323, DOI: https://doi.org/10.1111/j.1467-985X.2005.00350.x

    MathSciNet  Article  Google Scholar 

  26. Salvati L, Zitti M, Ceccarelli T, Perini L (2009) Developing a synthetic index of land vulnerability to drought and desertification. Geographical Research 47(3):280–291, DOI: https://doi.org/10.1111/j.1745-5871.2009.00590.x

    Article  Google Scholar 

  27. Shahid S, Behrawan H (2008) Drought risk assessment in the western part of Bangladesh. Natural Hazards 46(3):391–413, DOI: https://doi.org/10.1007/s11069-007-9191-5

    Article  Google Scholar 

  28. Sherrieb K, Norris FH, Galea S (2010) Measuring capacities for community resilience. Social Indicators Research 99(2):227–247, DOI: https://doi.org/10.1007/s11205-010-9576-9

    Article  Google Scholar 

  29. Shiau J-T (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resources Management 20(5):795–815, DOI: https://doi.org/10.1007/s11269-005-9008-9

    Article  Google Scholar 

  30. Shiau J-T, Hsiao Y-Y (2012) Water-deficit-based drought risk assessments in Taiwan. Natural Hazards 64(1):237–257, DOI: https://doi.org/10.1007/s11069-012-0239-9

    Article  Google Scholar 

  31. Singh GR, Jain MK, Gupta V (2019) Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India. Natural Hazards 99(2):611–635, DOI: https://doi.org/10.1007/s11069-019-03762-6

    Article  Google Scholar 

  32. Smit B, Burton I, Klein RJT, Street R (1999) The science of adaptation: A framework for assessment. Mitigation and Adaptation Strategies for Global Change 4:199–213, DOI: https://doi.org/10.1023/A:1009652531101

    Article  Google Scholar 

  33. WAMIS (2019) Water Resources Management Information System, Retrieved December 1, 2019, http://www.wamis.go.kr

  34. Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: The role of definitions. Water International 10(3):111–120, DOI: https://doi.org/10.1080/02508068508686328

    Article  Google Scholar 

  35. Wisner B, Blaikie P, Cannon T, Davis I (1994) At risk: Natural hazards, people vulnerability, and disasters. Routledge Publisher, London, UK, 1–471

    Google Scholar 

  36. Yoo J, Kwon H-H, Lee J-H, Kim T-W (2016) Influence of evapotranspiration on future drought risk using bivariate drought frequency curves. KSCE Journal of Civil Engineering 20(7):2059–2069, DOI: https://doi.org/10.1007/s12205-015-0078-9

    Article  Google Scholar 

  37. Zhang Q, Peng S, Li J, Mingzhong X, Singh VP (2014) Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theoretical and Applied Climatology 121(1–2):337–347, DOI: https://doi.org/10.1007/s00704-014-1234-8

    Google Scholar 

  38. Zhang Q, Xiao M, Singh VP, Chen X (2013) Copula-based risk evaluation of droughts across the Pearl River basin, China. Theoretical and Applied Climatology 111:119–131, DOI: https://doi.org/10.1007/s00704-012-0656-4

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Water Management Research Program of Korea Ministry of Environment (MOE) (Grant no. 79616) and Korea National Research Foundation (Grant no. 2020R1A2C1012919).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tae-Woong Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Kim, J.E., Lee, JH. et al. Development of a PCA-Based Vulnerability and Copula-Based Hazard Analysis for Assessing Regional Drought Risk. KSCE J Civ Eng (2021). https://doi.org/10.1007/s12205-021-0922-z

Download citation

Keywords

  • Drought
  • Vulnerability
  • Hazard
  • Risk
  • Socioeconomic indicator
  • Occurrence probability