BEM-FORM Model for the Probabilistic Response of Circular Tunnels in Elastic Media

Abstract

Problems involving cavities or excavations are widely addressed in geomechanics, in both analytical and numerical approaches. The boundary element method (BEM) is well-known as an interesting choice for half plane problems, providing accurate results at a low computational cost. This work deals with the probabilistic analysis of circular tunnels embedded in elastic media, coupling a BEM formulation to a structural reliability model. The gravitational loading and material parameters are treated as random variables, whose statistical description is taken from the literature. The loadings considered include the vertical overburden stress and the lateral earth pressure. Regarding the reliability evaluation, first order reliability method (FORM) and Monte Carlo simulation technique are employed, being compared in terms of accuracy. Regarding the BEM model, the Multiple Reciprocity Method (MRM) is used in the evaluation of domain integrals, and the subregion technique is employed for the analysis of the tunnel lining. Some analyses are presented, in order to validate the coupled BEM-FORM model and apply it to the estimation of failure probability, evaluating the influence of the random variables taken into account in the probabilistic response.

This is a preview of subscription content, log in to check access.

References

  1. Ang HS, Tang WH (1984) Probability concepts in engineering planning and design, vol. 2 — Decision, risk, and reliability. Wiley, New York, NY, USA

    Google Scholar 

  2. Beck AT (2019) Confiabilidade e segurança das estruturas, 1st edition. Elsevier, Rio de Janeiro, Brazil (in Portuguese)

    Google Scholar 

  3. Beer G, Duenser C (2016) Advanced Boundary Element analysis of geotechnical problems with geological inclusions. Computers and Geotechnics 79:86–95, DOI: 10.1016/j.compgeo.2016.06.004

    Article  Google Scholar 

  4. Brebbia CA, Dominguez J (1989) Boundary elements: An introductory course. McGraw Hill, Southampton, UK

    Google Scholar 

  5. Dang TS, Meschke G (2018) A Shear-Slip Mesh Update–Immersed Boundary Finite Element model for computational simulations of material transport in EPB tunnel boring machines. Finite Elements in Analysis & Design 142:1–16, DOI: 10.1016/j.finel.2017.12.008

    MathSciNet  Article  Google Scholar 

  6. Ditlevsen O (1981) Uncertainity modeling: With applications to multidimensional civil engineering systems. McGraw-Hill, New York, NY, USA

    Google Scholar 

  7. Ghasemi H, Brighenti R, Zhuang X, Muthu J, Rabczuk T (2015) Optimum fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Structural and Multidisciplinary Optimization 51(1):99–112, DOI: 10.1007/s00158-014-1114-y

    MathSciNet  Article  Google Scholar 

  8. Ghasemi H, Kerfriden P, Bordas SPA, Muthu J, Zi G, Rabczuk T (2015b) Probabilistic multiconstraints optimization of cooling channels in ceramic matrix composites. Composites Part B 81:107–119, DOI: 10.1016/j.compositesb.2015.06.023

    Article  Google Scholar 

  9. Ghasemi H, Rafiee R, Zhuang X, Muthu J, Rabczuk T (2014) Uncertaintiespropagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling. Computational Material Science 85:295–305, DOI: 10.1016/j.commatsci.2014.01.020

    Article  Google Scholar 

  10. Hamrouni A, Dias D, Sbartai B (2017) Reliability analysis of shallow tunnels using the response surface methodology. Underground Space 2(4):246–258, DOI: 10.1016/j.undsp.2017.11.003

    Article  Google Scholar 

  11. Hasofer AM, Lind NC (1974) An exact and invariant first-order reliability format. Journal of Engineering Mechanics 100(1)

    Google Scholar 

  12. Hoek E (1998) Reliability of Hoek-Brown estimates of rock mass properties and their impact on design. International Journal of Rock Mechanics and Mining Sciences 35(1):63–68, DOI: 10.1016/S0148-9062(97)00314-8

    Article  Google Scholar 

  13. Li HZ, Low BK (2010) Reliability analysis of circular tunnel under hydrostatic stress field. Computers and Geotechnics 37(1-2):50–58, DOI: 10.1016/j.compgeo.2009.07.005

    Article  Google Scholar 

  14. Low BK, Einstein HH (2013) Reliability analysis of roof wedges and rockbolt forces in tunnels. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research 38:1–10, DOI: 10.1016/j.tust.2013.04.006

    Article  Google Scholar 

  15. Low BK, Tang WH (2007) Efficient spreadsheet algorithm for first-order reliability method. Journal of Engineering Mechanics 133(12):1378–1387, DOI: 10.1061/(asce)0733-9399(2007)133:12(1378)

    Article  Google Scholar 

  16. Lü Q, Low BK (2011) Probabilistic analysis of underground rock excavations using response surface method and SORM. Computers and Geotechnics 38(8):1008–1021, DOI: 10.1016/j.compgeo.2011. 07.003

    Article  Google Scholar 

  17. Lü Q, Xiao ZP, Ji J, Zheng J (2017) Reliability based design optimization for a rock tunnel support system with multiple failure modes using response surface method. Tunnelling and Underground Space Technology 70:1–10, DOI: 10.1016/j.tust.2017.06.017

    Article  Google Scholar 

  18. Mollon G, Dias D, Soubra AH (2009) Probabilistic analysis and design of circular tunnels against face stability. International Journal of Geomechanics 9(6):237–249, DOI: 10.1061/(asce)1532-36412009 9:6(237)

    Article  Google Scholar 

  19. Mollon G, Dias D, Soubra AH (2009b) Probabilistic analysis of circular tunnels in homogeneous soils using response surface methodology. Journal of Geotechnical and Geoenvironmental Engineering 135(9):1314–1325, DOI: 10.1061/(ASCE)GT.1943-5606.0000060

    Article  Google Scholar 

  20. Nardini D, Brebbia CA (1983) A new approach to free vibration analysis using boundary elements. Applied Mathematical Modelling 7(3):157–162, DOI: 10.1016/0307-904x(83)90003-3

    Article  Google Scholar 

  21. Neves AC, Brebbia (1991) The multiple Reciprocity boundary element method in elasticity: A new approach for transforming domain integrals to the boundary. International Journal for Numerical Methods in Engineering 31(4):709–727, DOI: 10.1002/nme.1620310406

    Article  Google Scholar 

  22. Panji M, Koohsari H, Adampira M, Alielahi H, Asgari Marnani J (2016) Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method. Journal of Rock Mechanics and Geotechnical Engineering 8(4):480–488, DOI: 10.1016/j.jrmge.2016. 01.006

    Article  Google Scholar 

  23. Prazeres PGC, Thoeni K, Beer G (2012) Nonlinear analysis of NATM tunnel construction with the boundary element method. Computers and Geotechnics 40:160–173, DOI: 10.1016/j.compgeo.2011.10.005

    Article  Google Scholar 

  24. Rackwitz R, Fiessler B (1978) Structural reliability under combined random load sequences. Computers and Structures 9(5):489–494, DOI: 10.1016/0045-7949(78)90046-9

    Article  Google Scholar 

  25. Rizzo FJ, Shippy DJ (1968) A formulation and solution procedure for the general non-homogeneous elastic inclusion problem. International Journal of Solids and Structures 4:1161–1179, DOI: 10.1016/0020-7683(68)90003-6

    Article  Google Scholar 

  26. Shinozuka M (1983) Basic analysis of structural safety. Journal of Structural Engineering 109(3):721–740, DOI: 10.1061/(asce)0733-9445(1983) 109:3(721)

    Article  Google Scholar 

  27. Wang Q, Fang H, Shen L (2016) Reliability analysis of tunnels using a metamodeling technique based on augmented radial basis functions. Tunnelling and Underground Space Technology 56:45–53, DOI: 10.1016/j.tust.2016.02.007

    Article  Google Scholar 

  28. Wu P, Yang T, Jia W (2019) Reliability analysis and prediction on tunnel roof under blasting disturbance. KSCE Journal of Civil Engineering 23(9):4036–4046, DOI: 10.1007/s12205-019-1887-z

    Article  Google Scholar 

  29. Zechner J, Beer G (2012) A fast elasto-plastic formulation with hierarchical matrices and the boundary element method. Computational Mechanics 51(4), DOI: 10.1007/s00466-012-0756-0

    Google Scholar 

  30. Zeng P, Senent S, Jimenez R (2016) Reliability analysis of circular tunnel face stability obeying hoek-brown failure criterion. Journal of Computing in Civil Engineering 30(1):2390–2398, DOI: 10.1061/(ASCE)CP.1943-5487.0000464

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Coordination for the Improvement of Higher Education Personnel–CAPES, for the scholarship provided to the first author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luís Philipe Ribeiro Almeida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almeida, L.P.R., de Lima, E.T. & Barbirato, J.C.C. BEM-FORM Model for the Probabilistic Response of Circular Tunnels in Elastic Media. KSCE J Civ Eng 24, 2244–2255 (2020). https://doi.org/10.1007/s12205-020-5040-9

Download citation

Keywords

  • Structural reliability
  • Boundary element method
  • Half-plane problem
  • Multiple reciprocity method
  • FORM