An Analytical Research about Parameter Influence on Large-Scale Anchorage Region with Multiple CFRP Cables

Abstract

This study investigates the mechanical properties of carbon fiber reinforced polymer (CFRP) cable at the anchoring region where arrange the adhesive material with different mediums aiming at reducing the high stress concentration. The 3D finite element (FE) model was established based on cable force of 100t and 1000t, and its accuracy was verified by experimental results. The effects of geometrical dimensions and mediums stiffness on anchoring capacity of the cable was studied. The results show that the proposed anchorage gets high anchoring efficiency. The gradient variation of the stiffness of the adhesive material can effectively reduce the stress crest of the cable at the anchorage region. The distributions of the radial and shear stress of the cable at the anchorage region become comparatively flat with the increase in the number of segments. The variation stiffness and length ratio have the main influence on the stress of the cable in three orientations. Friction coefficient and internal taper have the secondary effects on the radial stress and the axial displacement. Anchor length and thickness of adhesive material only affect the radial stress. Anchorage design should primarily focus on the stiffness and length ratio of the adhesive material. The anchoring method proposed in this paper is helpful to anchor multi-tendon cables efficiently, and promote the application of high-capacity FRP cables in large-span spatial structure.

This is a preview of subscription content, access via your institution.

References

  1. Al-Mayah A, Soudki K, Plumtree A (2007) Novel anchor system for CFRP rod: Finite-element and mathematical models. Journal of Composites for Construction 11(5):469–476, DOI: https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(469)

    Article  Google Scholar 

  2. Al-Mayah A, Soudki K, Plumtree A (2013) Simplified anchor system for CFRP rods. Journal of Composites for Construction 17(5):584–590, DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000367

    Article  Google Scholar 

  3. Cai DS, Xu ZH, Yin J, Liu RG, Liang G (2016) A numerical investigation on the performance of composite anchors for CFRP tendons. Construction and Building Materials 112:848–855, DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.202

    Article  Google Scholar 

  4. Carvelli V, Fava G, Pisani MA (2009) Anchor system for tension testing of large diameter GFRP bars. Journal of Composites for Construction 13(5):344–349, DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000027

    Article  Google Scholar 

  5. Fava G, Carvelli V, Pisani MA (2012) Mechanical behaviour modelling of a new anchor system for large diameter GFRP bars. Composites Part B: Engineering 43(3):1397–1404, DOI: https://doi.org/10.1016/j.compositesb.2011.10.016

    Article  Google Scholar 

  6. Feng P, Zhang P, Meng XM, Ye LP (2014) Mechanical analysis of stress distribution in a carbon fiber-reinforced polymer rod bonding anchor. Polymers 6(4):1129–1143, DOI: https://doi.org/10.3390/polym6041129

    Article  Google Scholar 

  7. GB/T14370 (2015) Anchorage, grip and coupler for prestressing tendons. GB/T14370, China National Standardization Management Committee, China Standards Press, Beijing, China

    Google Scholar 

  8. Li H, Lan CM, Ju Y, Li DS (2012) Experimental and numerical study of the fatigue properties of corroded parallel wire cables. Journal of Bridge Engineering 17(2):211–220, DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000235

    Article  Google Scholar 

  9. Liu Y, Zwingmann B, Schlaich M (2015) Carbon fiber reinforced polymer for cable structures — A review. Polymers 7(10):2078–2099, DOI: https://doi.org/10.3390/polym7101501

    Article  Google Scholar 

  10. Mei KH, Li Y, Lu Z (2015) Application study on the first cable-stayed bridge with CFRP cables in China. Journal of Traffic and Transportation Engineering (English Edition) 2(4):242–248, DOI: https://doi.org/10.1016/j.jtte.2015.05.004

    Article  Google Scholar 

  11. Meier U (2012) Carbon fiber reinforced polymer cables: Why? Why not? What if? Arabian Journal for Science and Engineering 37(2):399–411, DOI: https://doi.org/10.1007/s13369-012-0185-6

    Article  Google Scholar 

  12. Meier U, Farshad M (1996) Connecting high-performance carbon-fiber-reinforced polymer cables of suspension and cable-stayed bridges through the use of gradient materials. Journal of Computer-Aided Materials Design (Netherlands) 3(1–3):379–384, DOI: https://doi.org/10.1007/BF01185676

    Article  Google Scholar 

  13. Naderpour H, Mirrashid M, Nagai K (2019) An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro-fuzzy inference system. Engineering with Computers 36(3): 1083–1100, DOI: https://doi.org/10.1007/s00366-019-00751-y

    Article  Google Scholar 

  14. Pincheira LA, Woyak JP (2001) Anchorage of carbon fiber reinforced polymer (CFRP) tendons using cold-swaged barrels. PCI Journal 46(6):100–111, DOI: https://doi.org/10.15554/pcij.11012001.100.111

    Article  Google Scholar 

  15. Puigvert F, Crocombe AD, Gil L (2014) Static analysis of adhesively bonded anchorages for CFRP tendons. Construction and Building Materials 61:206–215, DOI: https://doi.org/10.1016/j.conbuildmat.2014.02.072

    Article  Google Scholar 

  16. Sayed-Ahmed EY, Shrive NG (1998) A new steel anchorage system for post-tensioning applications using carbon fibre reinforced plastic tendons. Canadian Journal of Civil Engineering 25(1):113–127, DOI: https://doi.org/10.1139/cjce-25-1-113

    Article  Google Scholar 

  17. Schmidt JW, Bennitz A, Täljsten B, Goltermann P, Pedersen H (2012) Mechanical anchorage of FRP tendons — A literature review. Construction and Building Materials 32:110–121, DOI: https://doi.org/10.1016/j.conbuildmat.2011.11.049

    Article  Google Scholar 

  18. Schmidt JW, Smith ST, Täljsten B, Bennitz A, Goltermann P, Pedersen H (2011) Numerical simulation and experimental validation of an integrated barrel-wedge anchorage for CFRP rods. Journal of Composites for Construction 15(3):284–292, DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000171

    Article  Google Scholar 

  19. Taha MMR, Shrive NG (2003a) New concrete anchors for carbon fiber-reinforced polymer post-tensioning tendons? Part 1: State-of-the-art review/design. ACI Structural Journal 100(1):86–95, DOI: https://doi.org/10.14359/12442

    Google Scholar 

  20. Taha MMR, Shrive NG (2003b) New concrete anchors for carbon fiber-reinforced polymer post-tensioning tendons? Part 2: Development/experimental investigation. ACI Structural Journal 100(1):96–104, DOI: https://doi.org/10.14359/12443

    Google Scholar 

  21. Wang X, Wu ZS (2010) Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges. Composite Structures 92(10): 2582–2590, DOI: https://doi.org/10.1016/j.compstruct.2010.01.023

    Article  Google Scholar 

  22. Wang X, Wu ZS, Wu G, Zhu H, Zen FX (2013) Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge. Composites Part B: Engineering 44(1):184–192, DOI: https://doi.org/10.1016/j.compositesb.2012.06.001

    Article  Google Scholar 

  23. Wang X, Xu PC, Wu ZS (2014) A novel anchor method for multi-tendon FRP cable: Manufacturing and experimental study. Journal of Composites for Construction 19:04015010, DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000563

    Article  Google Scholar 

  24. Wang X, Xu PC, Wu ZS, Shi JZ (2015) A novel anchor method for multi-tendon FRP cable: Concept and FE study. Composite Structures 120:552–564, DOI: https://doi.org/10.1016/j.compstruct.2014.10.024

    Article  Google Scholar 

  25. Wang LC, Zhang JY, Xu J, Han QH (2018) Anchorage systems of CFRP cables in cable structures — A review. Construction and Building Materials 160:82–99, DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.134

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by National Natural Science Foundation of China (No. 51808323), Natural Science Foundation of Shandong Province (No. ZR2017BEE017). The authors also acknowledge Jiangsu Construction Group Co. LTD for providing high-strength carbon fiber reinforcement for the experimental research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Feng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Zhong, J. & Li, H. An Analytical Research about Parameter Influence on Large-Scale Anchorage Region with Multiple CFRP Cables. KSCE J Civ Eng 25, 540–551 (2021). https://doi.org/10.1007/s12205-020-2346-6

Download citation

Keywords

  • CFRP cable
  • Anchorage region
  • FE method
  • Mechanical behavior
  • Parameter evaluation