Experimental Study on the Mechanical Behaviour of Natural Loess Based on Suction-Controlled True Triaxial Tests

Abstract

Loess is mostly distributed in an unsaturated state in nature, and the complexity of the engineering properties of unsaturated soil is mainly due to the existence of matric suction. Therefore, matric suction must be considered in investigating the mechanical properties of unsaturated loess. However, soils are most often subjected to three principal stresses with different magnitudes in practical engineering. For the sake of examining and discussing the mechanical behaviour of unsaturated natural loess under a complex stress path, a suction-controlled true triaxial apparatus with a rigid-flexible boundary is used to test unsaturated natural loess under a complicated stress path. Four trials of isotropic consolidation tests are conducted on natural loess under suction-controlled conditions via the true triaxial apparatus. The consolidation yield characteristics of the natural loess under different matric suctions are investigated. Forty-eight trials of consolidated drained true triaxial tests under suction-controlled conditions are conducted on unsaturated natural loess to examine and discuss the influence of the matric suction and intermediate principal stress parameter (b-value). The consolidated drained trials are performed under a constant net mean stress and a constant matric suction with different intermediate principal stress parameters (b-values). Stress-strain curves and failure envelopes of the natural loess are also presented. The results indicate that the stress-strain-strength response of unsaturated natural loess depends on the matric suction and intermediate principal stress parameter under true triaxial conditions.

This is a preview of subscription content, log in to check access.

References

  1. Chen CL, Zhang DF, Dong YZ, Chen H, Yu DB, Xue JX (2014) Suction and mechanical behaviours of unsaturated intact loess from constant water content triaxial tests. Chinese Journal of Geotechnical Engineering 36(7):1195–1202, DOI: https://doi.org/10.11779/CJGE201407002 (in Chinese)

    Google Scholar 

  2. Choi C, Arduino P, Harney MD (2008) Development of a true triaxial apparatus for sands and gravels. Geotechnical Testing Journal 31(1):32–44, DOI: https://doi.org/10.1520/GTJ100217

    Google Scholar 

  3. Derbyshire E (2001) Geological hazards in loess terrain, with particular reference to the loess areas of China. Earth-Science Reviews 54(1–3):231–260, DOI: https://doi.org/10.1016/S0012-8252(01)00050-2

    Google Scholar 

  4. Fan XM, Xu Q, Scaringi G, Li S, Peng DL (2017) A chemo-mechanical insight into the failure mechanism of frequently occurred landslides in the Loess Plateau, Gansu Province, China. Engineering Geology 228(13):337–345, DOI: https://doi.org/10.1016/j.enggeo.2017.09.003

    Google Scholar 

  5. Fredlund DG, Morgenstern NR (1977) Stress state variables for unsaturated soils. Journal of the Geotechnical Engineering Division 103(5):447–466

    Google Scholar 

  6. Fredlund DG, Morgenstern NR, Widger RA (1978) The shear strength of unsaturated soils. Canadian Geotechnical Journal 15(3):313–321, DOI: https://doi.org/10.1139/t78-029

    Google Scholar 

  7. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley & Sons, Inc., Hoboken, NJ, USA

    Google Scholar 

  8. Gao DH, Chen ZH, Guo N, Zhu YP, Hu SX, Yao ZH (2017) The influence of dry density and matric suction on the deformation and the strength characteristics of the remolded loess soils. Chinese Journal of Rock Mechanics and Engineering 36(3):736–744, DOI: https://doi.org/10.13722/j.cnki.jrme.2015.1761 (in Chinese)

    Google Scholar 

  9. Gibbs HJ, Holland WY (1960) Petrographic and engineering properties of loess. Technical Information Branch, Denver, CO, USA, 1–37

    Google Scholar 

  10. Hambly EC (1969) A new true triaxial apparatus. Geotechnique 19(2):307–309, DOI: https://doi.org/10.1680/geot.1969.19.2.307

    Google Scholar 

  11. Hoyos LR, Macari EJ (2001) Development of a stress/suction-controlled true triaxial testing device for unsaturated soils. Geotechnical Testing Journal 24(1):5–13, DOI: https://doi.org/10.1520/GTJ11277J

    Google Scholar 

  12. Hoyos LR, Perez-Ruiz DD, Puppala AJ (2012) Refined true triaxial apparatus for testing unsaturated soils under suction-controlled stress paths. International Journal of Geomechanics 12(3):281–291, DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000138

    Google Scholar 

  13. Ibsen LB, Praastrup U (2002) The danish rigid boundary true triaxial apparatus for soil testing. Geotechnical Testing Journal 25(3):254–265, DOI: https://doi.org/10.1520/GTJ11096J

    Google Scholar 

  14. Jiang MJ, Shen ZJ (1998) Preparation of artificial structured collapsible loess and its behavior in oedometer test. Proceedings of 2nd international conference on unsaturated soils, August 27–30, Beijing, China

  15. Jiang MJ, Zhang FG, Hu HJ, Cui YJ, Peng JB (2014) Structural characterization of natural loess and remolded loess under triaxial tests. Engineering Geology 181(1):249–260, DOI: https://doi.org/10.1016/j.enggeo.2014.07.021

    Google Scholar 

  16. Jose BT, Sridharan A, Abraham BM (1989) Log-log method for determination of preconsolidation pressure. Geotechnical Testing Journal 12(3):230–237, DOI: https://doi.org/10.1520/GTJ10974J

    Google Scholar 

  17. Junior MSD, Pierce FJ (1995) A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technology 8(2):139–151, DOI: https://doi.org/10.1016/0933-3630(95)00015-8

    Google Scholar 

  18. Kim D, Kang SS (2013) Engineering properties of compacted loesses as construction materials. KSCE Journal of Civil Engineering 17(2): 335–341, DOI: https://doi.org/10.1007/s12205-013-0872-1

    Google Scholar 

  19. Kirkgard MM, Lade PV (1993) Anisotropic three-dimensional behavior of a normally consolidated clay. Canadian Geotechnical Journal 30(5):848–858, DOI: https://doi.org/10.1139/t93-075

    Google Scholar 

  20. Ko HY, Scott RF (1967) A new soil testing apparatus. Geotechnique 17(1):40–57, DOI: https://doi.org/10.1680/geot.1967.17.1.40

    Google Scholar 

  21. Li P, Vanapalli S, Li TL (2016) Review of collapse triggering mechanism of collapsible soils due to wetting. Journal of Rock Mechanics and Geotechnical Engineering 8(2):256–274, DOI: https://doi.org/10.1016/j.jrmge.2015.12.002

    Google Scholar 

  22. Liu Z, Liu FY, Ma FL, Wang M, Bai XH, Zheng YL, Yin H, Zhang GP (2015) Collapsibility, composition, and microstructure of a loess in China. Canadian Geotechnical Journal 53(4):673–686, DOI: https://doi.org/10.1139/cgj-2015-0285

    Google Scholar 

  23. Luo H, Wu FQ, Chang JY, Xu JB (2018) Microstructural constraints on geotechnical properties of Malan loess: A case study from Zhaojiaan landslide in Shaanxi province, China. Engineering Geology 236(26):60–69, DOI: https://doi.org/10.1016/j.enggeo.2017.11.002

    Google Scholar 

  24. Macari EJ, Hoyos LR (2001) Mechanical behavior of an unsaturated soil under multi-axial stress states. Geotechnical Testing Journal 24(1):14–22, DOI: https://doi.org/10.1520/GTJ11278J

    Google Scholar 

  25. Macari EJ, Hoyos LR, Arduino P (2003) Constitutive modeling of unsaturated soil behavior under axisymmetric stress states using a stress/suction-controlled cubical test cell. International Journal of Plasticity 19(10):1481–1515, DOI: https://doi.org/10.1016/S0749-6419(02)00018-9

    MATH  Google Scholar 

  26. Matalucci RV, Abdel-Hady M, Shelton JW (1970) Influence of grain orientation on direct shear strength of a loessial soil. Engineering Geology 4(2):121–132, DOI: https://doi.org/10.1016/0013-7952(70)90008-6

    Google Scholar 

  27. Matsuoka H, Sun D, Kogane A, Fukuzawa N, Ichihara W (2002) Stress-strain behaviour of unsaturated soil in true triaxial tests. Geotechnical Testing Journal 39(3):608–619, DOI: https://doi.org/10.1139/T02-031

    Google Scholar 

  28. Ng CWW, Sadeghi H, Jafarzadeh F (2017) Compression and shear strength characteristics of compacted loess at high suctions. Geotechnical Testing Journal 54(5):690–699, DOI: https://doi.org/10.1139/cgj-2016-0347

    Google Scholar 

  29. Patil UD, Puppala AJ, Hoyos LR, Perdarla A (2017) Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing. Engineering Geology 231(14):21–33, DOI: https://doi.org/10.1016/j.enggeo.2017.10.011

    Google Scholar 

  30. Phien-Wej N, Pientong T, Balasubramaniam AS (1992) Collapse and strength characteristics of loess in Thailand. Engineering Geology 32(1–2):59–72, DOI: https://doi.org/10.1016/0013-7952(92)90018-T

    Google Scholar 

  31. Porter SC (2013) Loess records ∣ China. Encyclopedia of Quaternary Science 595–605, DOI: https://doi.org/10.1016/B978-0-444-53643-3.00157-6

  32. Reddy KR, Saxena SK, Budiman JS (1992) Development of a triaxial testing apparatus. Geotechnical Testing Journal 15(2):89–105, DOI: https://doi.org/10.1520/GTJ10231J

    Google Scholar 

  33. Rogers CDF, Dijkstra TA, Smalley IJ (1994) Hydroconsolidation and subsidence of loess: Studies from China, Russia, North America and Europe. Engineering Geology 37(2):83–113, DOI: https://doi.org/10.1016/0013-7952(94)90045-0

    Google Scholar 

  34. Rousseau DD, Derbyshire E, Antoine P, Hatté C (2007) Loess records ∣ Europe. Encyclopedia of Quaternary Science 1440–1456, DOI: https://doi.org/10.1016/B0-44-452747-8/00162-9

  35. Ryashchenko TG, Akulova VV, Erbaeva MA (2008) Loessial soils of Priangaria, Transbaikalia, Mongolia, and Northwestern China. Quaternary International 179(1):90–95, DOI: https://doi.org/10.1016/j.quaint.2007.06.035

    Google Scholar 

  36. Shao SJ, Wang Q, Luo AZ, Shao S (2017) True triaxial apparatus with rigid-flexible-flexible boundary and remolded loess testing. Journal of Testing and Evaluation 45(3):808–817, DOI: https://doi.org/10.1520/JTE20150177

    Google Scholar 

  37. Sheng CN, Fang XW, Chen ZH (2010) The unsaturated direct shear tests of Q2 loess. Chinese Journal of Underground Space and Engineering 6(4):724–728, DOI: https://doi.org/10.3969/j.issn.1673-0836.2010.04.012 (in Chinese)

    Google Scholar 

  38. Sun JM (2002) Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters 203(3–4):845–859, DOI: https://doi.org/10.1016/S0012-821X(02)00921-4

    Google Scholar 

  39. Tan TK (1988) Fundamental properties of loess from northwestern China. Engineering Geology 25(2–4):103–122, DOI: https://doi.org/10.1016/0013-7952(88)90022-1

    Google Scholar 

  40. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5):892–898, DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Google Scholar 

  41. Xing XL, Li TL, Fu YK (2016) Determination of the related strength parameters of unsaturated loess with conventional triaxial test. Environmental Earth Sciences 75:82, DOI: https://doi.org/10.1007/s12665-015-4797-5

    Google Scholar 

  42. Xing YC, Gao DH, Jin SL, Zhang AJ, Guo MX (2019) Study on mechanical behaviors of unsaturated loess in terms of moistening level. KSCE Journal of Civil Engineering 23(3):1055–1063, DOI: https://doi.org/10.1007/s12205-019-0848-x

    Google Scholar 

  43. Yin JH, Cheng CM, Kumruzzaman M, Zhou WH (2010) New mixed boundary, true triaxial loading device for testing three-dimensional stress-strain-strength behavior of geomaterials. Canadian Geotechnical Journal 47(1):1–15, DOI: https://doi.org/10.1139/T09-075

    Google Scholar 

  44. Zárate MA (2013) Loess records ∣ South America. Encyclopedia of Quaternary Science 629–641, DOI: https://doi.org/10.1016/B978-0-444-53643-3.00160-6

  45. Zhang Y, Hu ZQ, Chen H, Xue T (2018) Experimental investigation of the behavior of collapsible loess treated with the acid-addition presoaking method. KSCE Journal of Civil Engineering 22(11):4373–4384, DOI: https://doi.org/10.1007/s12205-017-0170-4

    Google Scholar 

Download references

Acknowledgements

This research was accomplished under the financial support from the National Natural Science Foundation of China (Grant Nos. 11572245 and 41272320). This support is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shengjun Shao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Shao, S., Wang, J. et al. Experimental Study on the Mechanical Behaviour of Natural Loess Based on Suction-Controlled True Triaxial Tests. KSCE J Civ Eng (2020). https://doi.org/10.1007/s12205-020-1386-2

Download citation

Keywords

  • Natural loess
  • Matric suction
  • True triaxial apparatus
  • Stress-strain response
  • Failure envelopes