Modelling Triaxial Tests on Fibre-Reinforced Sands with Different Fibre Orientations Using the Discrete Element Method

Abstract

Fibre-reinforced soil has been widely applied as a composite fill material in geotechnical engineering. In this study, triaxial tests of fibre-reinforced specimens with different fibre orientations were performed employing the discrete element method. The approach enables an investigation of some significant micromechanical properties, including the contact orientation distribution, coordination number, particle displacement field, and contact sliding fraction. From the discrete element method (DEM) perspective, fibre orientation affects the contact force distributions and the load-bearing mechanism for this mixture system. More horizontal fibre particles participate in supporting the strong force chains compared with the vertical and random fibres. Fibre orientation also affects the pattern of displacement fields, which shows that horizontal fibres can limit the formation of localised shear bands. Horizontal fibres also cause the largest increase in the normal contact force acting on the fibre-sand interface and the coordination number of the sand-fibre contact type, which leads to an increase of sliding friction between fibres and the sand matrix. The majority of horizontal fibres could also produce tension during triaxial compression, leading to a more effective reinforcement. The results from this study could contribute to improving our knowledge of mechanical behaviours of sand-fibre composites.

This is a preview of subscription content, log in to check access.

References

  1. Al-Refeai TO (1991) Behavior of granular soils reinforced with discrete randomly oriented inclusions. Geotextiles & Geomembranes 10(4):319–333, DOI: https://doi.org/10.1016/0266-1144(91)90009-L

    Google Scholar 

  2. Babu GS, Vasudevan A, Haldar S (2008) Numerical simulation of fiber-reinforced sand behavior. Geotextiles and Geomembranes 26(2):181–188, DOI: https://doi.org/10.1016/j.geotexmem.2007.06.004

    Google Scholar 

  3. Cai Y, Shi B, Ng CW, Tang C-S (2006) Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology 87(3):230–240, DOI: https://doi.org/10.1016/j.enggeo.2006.07.007

    Google Scholar 

  4. Casagrande M (2001) Study of the behavior of a polypropylene fiber reinforced soil seeking its use as a base of shallow foundations. MSc thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

    Google Scholar 

  5. Casagrande MDT, Coop MR, Consoli NC (2006) Behavior of a fiber-reinforced bentonite at large shear displacements. Journal of Geotechnical and Geoenvironmental Engineering 132(11):1505–1508, DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1505)

    Google Scholar 

  6. Consoli NC, Casagrande MD, Coop MR (2005) Effect of fiber reinforcement on the isotropic compression behavior of a sand. Journal of Geotechnical and Geoenvironmental Engineering 131(11):1434–1436, DOI: https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1434)

    Google Scholar 

  7. Consoli NC, Prietto PD, Ulbrich LA (1998) Influence of fiber and cement addition on behavior of sandy soil. Journal of Geotechnical and Geoenvironmental Engineering 124(12):1211–1214, DOI: https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211)

    Google Scholar 

  8. Consoli NC, Zortéa F, de Souza M, Festugato L (2011) Studies on the dosage of fiber-reinforced cemented soils. Journal of Materials in Civil Engineering 23(12):1624–1632, DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000343

    Google Scholar 

  9. Diambra A, Ibraim E (2015) Fibre-reinforced sand: Interaction at the fibre and grain scale. Géotechnique 65(4):296–308, DOI: https://doi.org/10.1680/geot.14.P.206

    Google Scholar 

  10. Diambra A, Ibraim E, Russell A, Wood DM (2013) Fibre reinforced sands: From experiments to modelling and beyond. International Journal for Numerical and Analytical Methods in Geomechanics 37(15):2427–2455, DOI: https://doi.org/10.1002/nag.2142

    Google Scholar 

  11. Diambra A, Russell AR, Ibraim E, Muir Wood D (2007) Determination of fibre orientation distribution in reinforced sands. Géotechnique 57(7):623–628, DOI: https://doi.org/10.1680/geot.2007.57.7.623

    Google Scholar 

  12. Gray DH, Al-Refeai T (1986) Behavior of fabric-versus fiber-reinforced sand. Journal of Geotechnical Engineering 112(8):804–820, DOI: https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(804)

    Google Scholar 

  13. Gray DH, Ohashi H (1983) Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering 109(3):335–353, DOI: https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335)

    Google Scholar 

  14. Jiang MJ, Zhu YG (2017) DEM analysis of the remoulded loess and root system interface friction. Chinese Journal of Water Resources and Water Engineering 28(2):210–215, DOI: https://doi.org/10.11705/j.issn.1672-643X.2017.02.36

    Google Scholar 

  15. Kanchi GM, Neeraja V, Sivakumar Babu G (2014) Effect of anisotropy of fibers on the stress-strain response of fiber-reinforced soil. International Journal of Geomechanics 15(1):06014016, DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000392

    Google Scholar 

  16. Kumar S, Tabor E (2003) Strength characteristics of silty clay reinforced with randomly oriented nylon fibers. Electronic Journal of Geotechnical Engineering 8(10)

  17. Kumar A, Walia BS, Bajaj A (2007) Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil. Journal of Materials in Civil Engineering 19(3):242–248, DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(242)

    Google Scholar 

  18. Li C (2005) Mechanical response of fiber-reinforced soil. PhD Thesis, The University of Texas at Austin, Austin, TX, USA

    Google Scholar 

  19. Li G, Zhang JL, Liu J (2019a) Experimental study on the shear behaviors of polypropylene fiber-reinforced sand. KSCE Journal of Civil Engineering 23(12):4992–5001, DOI: https://doi.org/10.1007/s12205-019-0794-7

    Google Scholar 

  20. Li J, Zhang JH, Qian GP, Zheng JL (2019b) Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation. Journal of Materials in Civil Engineering 31(3):04019004, DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0002623

    Google Scholar 

  21. Maeda K, Ibraim E (2008) DEM analysis of 2D fibre-reinforced granular soils. Proceedings of the fourth international symposium on deformation characteristics of geomaterials, September 22–24, Atlanta, GA, USA, 623–628

  22. Maher M, Ho Y (1994) Mechanical properties of kaolinite/fiber soil composite. Journal of Geotechnical Engineering 120(8):1381–1393, DOI: https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1381)

    Google Scholar 

  23. Maher MH, Gray DH (1990) Static response of sands reinforced with randomly distributed fibers. Journal of Geotechnical Engineering, 116(11):1661–1677, DOI: https://doi.org/10.1061/(ASCE)0733-9410(1990)116:11(1661)

    Google Scholar 

  24. Michalowski R (2008) Limit analysis with anisotropic fibre-reinforced soil. Geotechnique 58(6):489–502, DOI: https://doi.org/10.1680/geot.2007.00055

    Google Scholar 

  25. Michalowski RL, Cermak J (2002) Strength anisotropy of fiber-reinforced sand. Computers and Geotechnics 29(4):279–299, DOI: https://doi.org/10.1016/S0266-352X(01)00032-5

    Google Scholar 

  26. Minh NH, Cheng YP (2013) A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Géotechnique 63(1):44, DOI: https://doi.org/10.1680/geot.10.P.058

    Google Scholar 

  27. Mohanty B, Chauhan MS, Mittal S (2011) Permanent strain of randomly oriented fiber reinforced rural road subgrade soil under repetitive triaxial loading. Geo-frontiers congress 2011, March 13–16, Dallas, TX, USA, 646–656, DOI: https://doi.org/10.1061/41165(397)67

  28. Montardo J (1999) Mechanical behavior of soil-cement-fiber composites: The effect of constituent material properties. MSc Thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

    Google Scholar 

  29. Nataraj M, McManis K (1997) Strength and deformation properties of soils reinforced with fibrillated fibers. Geosynthetics International 4(1):65–79, DOI: https://doi.org/10.1680/gein.4.0089

    Google Scholar 

  30. Neeraja V, Geetha Manjari K, Sivakumar Babu G (2014) Numerical analysis of effect of orientation of fibers on stress-strain response of fiber reinforced soil. International Journal of Geotechnical Engineering 8(3):328–334, DOI: https://doi.org/10.1179/1939787913Y.0000000023

    Google Scholar 

  31. Nguyen TT, Indraratna B (2016) Hydraulic behaviour of parallel fibres under longitudinal flow: A numerical treatment. Canadian Geotechnical Journal 53(7):1081–1092, DOI: https://doi.org/10.1139/cgj-2015-0213

    Google Scholar 

  32. O’Sullivan C (2011) Particle-based discrete element modeling: Geomechanics perspective. International Journal of Geomechanics 11(6):449–464, DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000024

    Google Scholar 

  33. Özkul ZH, Baykal G (2007) Shear behavior of compacted rubber fiber-clay composite in drained and undrained loading. Journal of Geotechnical and Geoenvironmental Engineering 133(7):767–781, DOI: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(767)

    Google Scholar 

  34. Patel SK, Singh B (2019) Shear strength response of glass fibre-reinforced sand with varying compacted relative density. International Journal of Geotechnical Engineering 13(4):339–351, DOI: https://doi.org/10.1080/19386362.2017.1352157

    Google Scholar 

  35. Ranjan G, Vasan R, Charan H (1996) Probabilistic analysis of randomly distributed fiber-reinforced soil. Journal of Geotechnical Engineering 122(6):419–426, DOI: https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(419)

    Google Scholar 

  36. Sadek S, Najjar SS, Freiha F (2010) Shear strength of fiber-reinforced sands. Journal of Geotechnical and Geoenvironmental Engineering 136(3):490–499, DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000235

    Google Scholar 

  37. Santoni RL, Tingle JS, Webster SL (2001) Engineering properties of sand-fiber mixtures for road construction. Journal of Geotechnical & Geoenvironmental Engineering 127(3):258–268, DOI: https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(258)

    Google Scholar 

  38. Sazzad MM, Suzuki K (2011) Effect of interparticle friction on the cyclic behavior of granular materials using 2D DEM. Journal of Geotechnical and Geoenvironmental Engineering 137(5):545–549, DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000441

    Google Scholar 

  39. Sharma V, Kumar A (2017) Strength and bearing capacity of ring footings resting on fibre-reinforced sand. International Journal of Geosynthetics and Ground Engineering 3(9):1–17, DOI: https://doi.org/10.1007/s40891-017-0086-6

    Google Scholar 

  40. Shukla S, Sivakugan N, Singh A (2010) Analytical model for fiber-reinforced granular soils under high confining stresses. Journal of Materials in Civil Engineering 22(9):935–942, DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000081

    Google Scholar 

  41. Soriano I, Ibraim E, Andò E, Diambra A, Laurencin T, Moro P, Viggiani G (2017) 3D fibre architecture of fibre-reinforced sand. Granular Matter 19(4):75, DOI: https://doi.org/10.1007/s10035-017-0760-3

    Google Scholar 

  42. Tang C-S, Shi B, Zhao L-Z (2010) Interfacial shear strength of fiber reinforced soil. Geotextiles and Geomembranes 28(1):54–62, DOI: https://doi.org/10.1016/j.geotexmem.2009.10.001

    Google Scholar 

  43. Tuan NQ (2015) DEM analysis of fibre-reinforced sand. 10th Freiberg — Saint Petersburg colloquium of young scientists, June 17–19, Freiberg, Germany, 112–120

  44. Waldron LJ (1977) The shear resistance of root-permeated homogeneous and stratified soil. Journal of the Soil Science Society of America 41(5):843–849, DOI: https://doi.org/10.2136/sssaj1977.03615995004100050005x

    Google Scholar 

  45. Wang JQ, Zhang LL, Chen YJ, Shi CH (2017) Mesoscopic analysis of reinforced sand triaxial test using PFC3D. Journal of Hydraulic Engineering 48(4) 426–434+445, DOI: https://doi.org/10.13243/j.cnki.slxb.20160829

    Google Scholar 

  46. Wang JQ, Zhang LL, Xue JF, Tang Y (2018) Load-settlement response of shallow square footings on geogrid-reinforced sand under cyclic loading. Geotextiles and Geomembranes 46(5):586–596, DOI: https://doi.org/10.1016/j.geotexmem.2018.04.009

    Google Scholar 

  47. Yang D, Wu K, Wan L, Sheng Y (2017) A particle element approach for modelling the 3D printing process of fibre reinforced Polymer Composites. Journal of Manufacturing and Materials Processing 1(1):10, DOI: https://doi.org/10.3390/jmmp1010010

    Google Scholar 

  48. Zhang JH, Li J, Yao YS, Zheng JL, Gu F (2018) Geometric anisotropy modeling and shear behavior evaluation of graded crushed rocks. Construction and Building Materials 183:346–355, DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.188

    Google Scholar 

  49. Zornberg J (2002) Discrete framework for limit equilibrium analysis of fibre-reinforced soil. Géotechnique 52(8):593–604, DOI: https://doi.org/10.1680/geot.2002.52.8.593

    Google Scholar 

Download references

Acknowledgements

The research was supported by National Natural Science Foundation of China (Grants 41702300 and 41572254). We thank Dr. Nguyen Quang Tuan for his help in preparing the paper. We also thank Bryan Schmidt from Edanz Editing China, for improving the English of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Nie, L., Liu, C. et al. Modelling Triaxial Tests on Fibre-Reinforced Sands with Different Fibre Orientations Using the Discrete Element Method. KSCE J Civ Eng (2020). https://doi.org/10.1007/s12205-020-1050-x

Download citation

Keywords

  • Fibre-reinforced sand
  • Discrete element method
  • Triaxial test
  • Fibre orientation
  • Particle-scale mechanical properties