Skip to main content
Log in

A Study on UCS of Stabilized Peat with Natural Filler: A Computational Estimation Approach

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This study applied two feed-forward type computational methods to estimate the Unconfined Compression Strength (UCS) of stabilized peat soil with natural filler and cement. For this purpose, experimental data was obtained via testing of 271 samples at different natural filler and cement mixture dosages. The input parameters for the developed UCS (output) model were: 1) binder dosage, 2) coefficient of compressibility, 3) filler dosage, and 4) curing time. The model estimated the UCS through two types of feed-forward Artificial Neural Network (ANN) models that were trained with Particle Swarm Optimization (ANN-PSO) and Back Propagation (ANN-BP) learning algorithms. As a means to validate the precision of the model two performance indices i.e., coefficient of correlation (R2) and Mean Square Error (MSE) were examined. Sensitivity analyses was also performed to investigate the influence of each input parameters and their contribution on estimating the output. Overall, the results showed that MSE(PSO) < MSE(BP) while R2(PSO) > R2(BP); suggesting that the ANN-PSO model better estimates the UCS compared to ANN-BP. In addition, on the account of sensitivity analysis, it is found that the binder and filler content were the two most influential factors whilst curing period was the least effective factor in predicting UCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abolfathi, S., Yeganeh-Bakhtiary, A., Hamze-Ziabari, S. M., and Borzooei, S. (2016). “Wave run up prediction using M5’ model tree algorithm.” Ocean Engineering, Vol. 112, pp. 76–81, DOI: 10.1016/j.oceaneng.2015.12.016.

    Article  Google Scholar 

  • Akbas, B., Shen, J., and Sabol, T. A. (2011). “Estimation of seismicinduced demands on column splices with a neural network model.” Applied Soft Computing, Vol. 11, No. 8, pp. 4820–4829, DOI: 10.1016/j.asoc.2011.06.019.

    Article  Google Scholar 

  • Aladag, C. H., Kayabasi, A., and Gokceoglu, C. (2013). “Estimation of pressuremeter modulus and limit pressure of clayey soils by various artificial neural network models.” Neural Computing and Applications Vol. 23, No. 2, pp. 333–339, DOI: 10.1007/s00521-012-0900-y.

    Article  Google Scholar 

  • ASTM (1992). Annual book of ASTM standards, American Society for Testing Materials (ASTM) International, Philadelphia, PA, USA.

  • ASTM (2000). Annual book of ASTM standards, American Society for Testing Materials (ASTM) International, Philadelphia, PA, USA.

  • BS (1990). Methods of test for soils for civil engineering purposes, British Standards Institute, London, UK.

  • Dehghanbanadaki, A., Arefnia, A., Keshtkarbanaeemoghadam, A., Ahmad, K., Motamedi, S., and Hashim, R. (2017). “Evaluating the compression index of fibrous peat treated with different binders.” Bulletin of Engineering Geology and the Environment, Vol. 76, No. 2, pp. 575–586, DOI: 10.1007/s10064-016-0890-6.

    Article  Google Scholar 

  • Edil, T. B. (2001). “Site characterization in peat and organic soils.” Proc. International Conference on in situ Measurement of Soil Properties and Case Histories, Bali, Indonesia, pp. 49–59.

    Google Scholar 

  • Edil, T. B. (2003). “Recent advances in geotechnical characterization and construction over peats and organic soils.” Proceedings of the 2nd International Conferences in Soft Soil Engineering and Technology, Putrajaya, Malaysia, pp. 1–16.

    Google Scholar 

  • EuroSoilStab (2002). “Development of design and construction methods to stabilize soft organic soils: Design guide soft soil stabilization.” CT97-0351. Industrial and Materials Technologies Program (Brite-EuRam III), European Commission.

    Google Scholar 

  • Ferentinou, M. D. and Sakellariou, M. G. (2007). “Computational intelligence tools for the prediction of slope performance.” Computers and Geotechnics, Vol. 34, No. 5, pp. 362–384, DOI: 10.1016/j.compgeo.2007.06.004.

    Article  Google Scholar 

  • Garson, G. D. (1991). “Interpreting neural-network connection weights.” Artif Intell Expert, Vol. 6, No. 7, pp. 47–5.

    Google Scholar 

  • Gevrey, M., Dimopoulos, I., and Lek, S. (2003). “Review and comparison of methods to study the contribution of variables in artificial neural network models.” Ecological modelling, Vol. 160, No. 3, pp. 249–264, DOI: 10.1016/S0304-3800(02)00257-0.

    Article  Google Scholar 

  • Goh, A. T. C. (1995). “Modeling soil correlations using neural networks.” J. Comput. Civil Engrg., ASCE, Vol. 9, No. 4, pp. 275–278. DOI: 10.1061/(ASCE)0887-3801(1995)9:4(275).

    Article  Google Scholar 

  • Gordan, B., Armaghani, D. J., Hajihassani, M., and Monjezi, M. (2016). “Prediction of seismic slope stability through combination of particle swarm optimization and neural network.” Engineering with Computers, Vol. 32, No. 1, pp. 85–97, DOI: 10.1007/s00366-015-0400-7.

    Article  Google Scholar 

  • Hashim, R. and Islam, S. (2008). “Engineering properties of peat soils in peninsular Malaysia.” Journal of Applied Sciences, Vol. 8, No. 22, pp. 4215–4219.

    Article  Google Scholar 

  • Head, K. H. and Epps, R. J. (2011). “Manual of soil laboratory testing.” Vol. 2, pp. 324–340.

    Google Scholar 

  • Hebib, S. and Farrell, E. R. (1999). “Some experience of stabilizing Irish organic soils.” Proc. Int. Conf. on Dry Mix Methods for Deep Soil Stabilization, Stockholm, Sweden, pp. 81–84.

    Google Scholar 

  • Hobbs, N. B. (1986). “Mire morphology and the properties and behavior of some british and foreign peats.” Quart. J. Eng. Geol., Vol. 19, No. 1, pp. 7–80, DOI: 10.1144/GSL.QJEG.1986.019.01.02.

    Article  Google Scholar 

  • Hornik, K., Stinchcombe, M., and White, H. (1989). “Multilayer feedforward networks are universal approximators.” Neural Networks, Vol. 2, No. 5, pp. 359–366, DOI: 10.1016/0893-6080(89)90020-8.

    Article  MATH  Google Scholar 

  • Huang, G. B., Chen, L., and Siew, C. K. (2006). “Universal approximation using incremental constructive feedforward networks with random hidden nodes.” IEEE Trans. Neural Networks, Vol. 17, No. 4, pp. 879–892.

    Article  Google Scholar 

  • Huat, B., Prasad, A., Asadi, A., and Kazemian, S. (2014). Geotechnics of organic soils and peat. CRC Press.

    Book  Google Scholar 

  • Hwang, J., Humphrey, A., Bobet, A., and Santagata, M. C. (2005). Stabilization and improvement of organic soils, JTRP Technical Report, Publication FHWA/IN/JTRP-2004/38, Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, IN, USA, DOI: 10.5703/1288284314216.

    Book  Google Scholar 

  • Jung, S. and Ghaboussi, J. (2006). “Neural network constitutive model for rate-dependent materials.” Comput. Struct., Vol. 84, Nos. 15–16, pp. 955–963, DOI: 10.1016/j.compstruc.2006.02.015.

    Article  Google Scholar 

  • Kalantari, B. and Prasad, A. (2014). “A study of the effect of various curing techniques on the strength of stabilized peat.” Transportation Geotechnics, Vol. 1, No. 3, pp. 119–128, DOI: 10.1016/j.trgeo.2014.06.002.

    Article  Google Scholar 

  • Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” Proceedings of IEEE international conference on neural networks, Piscataway, NJ, USA, pp. 1942–1948.

    Chapter  Google Scholar 

  • Kim, Y. S. and Kim, B. K. (2006) “Use of artificial neural networks in the prediction of liquefaction resistance of sands.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 11, pp. 1502–1504. DOI: 10.1061/(ASCE)1090-0241(2006)132:11(1502).

    Article  Google Scholar 

  • Landva, A. O. and Pheeney, P. (1980). “Peat fabric and structure.” Canadian Geotechnical Journal, Vol. 17, No. 3, pp. 416–435, DOI: 10.1139/t80-048.

    Article  Google Scholar 

  • Larose, D. T. (2005). Discovering knowledge in data: An introduction to data mining, John Wiley & Sons, Inc., Hoboken, NJ, USA.

    MATH  Google Scholar 

  • Long, M. and Boylan, N. (2012). “In-situ testing of peat - A review and update on recent developments.” Geotechnical Engineering Journal of the SEAGS and AGSSEA, Vol. 43, No. 4, pp. 41–45.

    Google Scholar 

  • Maroufpoor, E., Sanikhani, H., Emamgholizadeh, S., and Kisi, Ö. (2017). “Estimation of wind drift and evaporation losses from sprinkler irrigation systems by different data-driven methods.” Irrigation and Drainage, Vol. 67, No. 2, pp. 222–232, DOI: 10.1002/ird.2182.

    Article  Google Scholar 

  • Matlab (2016). “The language of technical learning.” Matworks Version R2016a.

    Google Scholar 

  • Mesri, G. and Ajlouni, M. (2007). “Engineering properties of fibrous peats.” J. Geotech. Geoenvironmental Eng. Vol. 133, No. 7, pp. 850–66, DOI: 10.1061.

    Article  Google Scholar 

  • Momeni, E., Armaghani, D. J., Hajihassani, M., and Amin, M. F. M. (2015). “Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks.” Measurement, Vol. 60, pp. 50–63, DOI: 10.1016/j.measurement.2014.09.075.

    Article  Google Scholar 

  • Mozumder, R. A. and Laskar, A. I. (2015). “Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network.” Computers and Geotechnics, Vol. 69, pp. 291–300, DOI: 10.1016/j.compgeo.2015.05.021.

    Article  Google Scholar 

  • Olden, J. D., Joy, M. K., and Death, R. G. (2004). “An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data.” Ecological Modelling, Vol. 178, No. 3, pp. 389–397, DOI: 10.1016/j.ecolmodel.2004.03.013.

    Article  Google Scholar 

  • Olden, J. D. and Jackson, D. A. (2002). “Illuminating the black box: A randomization approach for understanding variable contributions in artificial neural networks.” Ecological Modelling, Vol. 154, Nos. 1–2, pp. 135–150, DOI: 10.1016/S0304-3800(02)00064-9.

    Article  Google Scholar 

  • Park, H. I. and Cho, C. H. (2010). “Neural network model for predicting the resistance of driven piles.” Mar. Georesour. Geotech., Vol. 28, No. 4. pp. 324–344, DOI: 10.1080/1064119X.2010.514232.

    Article  Google Scholar 

  • Price, J. and Schlotzhauer, S. M. (1999). “Importance of shrinkage and compression in determining water storage changes in peat: The case of a mined peatland.” Hydrol. Process. Vol. 13, No. 16, pp. 2591–2601, DOI: 10.1002/(SICI)1099-1085(199911).

    Article  Google Scholar 

  • Rahgozar, M. A. and Saberian, M. (2016). “Geotechnical properties of peat soil stabilised with shredded waste tyre chips.” Mires and Peat 18, DOI: 10.19189/MaP.2015.OMB.205.

    Google Scholar 

  • Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., and Van Cappellen, P. (2016). “Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists.” Chemical Geology, Vol. 429, pp. 75–84, DOI: 10.1016/j.chemgeo.2016.03.010.

    Article  Google Scholar 

  • Sinha, S. K. and Wang, M. C. (2008). “Artificial neural network prediction models for soil compaction and permeability.” Geotech Eng J., Vol. 26, No. 1, pp. 47–64, DOI: 10.1007/s10706-007-9146-3.

    Article  Google Scholar 

  • Shahin, M. A., Maier, H. R., and Jaksa, M. B. (2004). “Data division for developing neural networks applied to geotechnical engineering.” J. Comput. Civ. Eng., ASCE, Vol. 18, No. 2, pp. 105–14, DOI: 10.1061/(ASCE)0887-3801(2004)18:2(105).

    Article  Google Scholar 

  • Shahin, M. A., Jaksa, M. B., and Maier, H. R. (2005). “Stochastic simulation of settlement prediction of shallow foundations based on a deterministic artificial neural network model.” Proceedings of the International Congress on Modelling and Simulation, MODSIM 2005, Melbourne, Australia, pp. 73–78.

    Google Scholar 

  • Shahin, M. A., Jaksa, M. B., and Maier, H. R. (2008). “State of the art of artificial neural networks in geotechnical engineering.” EJGE Special Volume Bouquet 08.

    Google Scholar 

  • Shi, Y. and Eberhart, R. C. (1999). “Empirical study of particle swarm optimization.” Proceedings of the 1999 Congress on Evolutionary Computation, IEEE, Vol. 3, pp. 1945–1950.

    Article  Google Scholar 

  • Sun, W. and Xu, Y. (2016). “Using a back propagation neural network based on improved particle swarm optimization to study the influential factors of carbon dioxide emissions in Hebei Province, China.” Journal of Cleaner Production, Vol. 112, pp. 1282–1291, DOI: 10.1016/j.jclepro.2015.04.097.

    Article  Google Scholar 

  • Tarawneh, B. (2016). “Predicting standard penetration test N-value from cone penetration test data using artificial neural networks.” Geoscience Frontiers, Vol. 8, No. 1, pp. 199–204, DOI: 10.1016/j.gsf.2016.02.003.

    Article  MathSciNet  Google Scholar 

  • Ulusay, R., Tuncay, E., and Hasancebi, N. (2010). “Geo-engineering properties and settlement of peaty soils at an industrial site (Turkey).” Bulletin of Engineering Geology and the Environment, Vol. 69, No. 3, pp. 397–410, DOI: 10.1007/s10064-010-0290-2.

    Article  Google Scholar 

  • Wehling, T. H., Boulanger, R. W., Arulnathan, R., Harder, L. F. J., and Driller, M. W. (2003). “Nonlinear dynamic properties of a fibrous organic soil.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 10, pp. 929–939, DOI: 10.1061/(ASCE)1090-0241(2003)129:10(929).

    Article  Google Scholar 

  • Wong, L. S., Roslan, H. and Faisal, A. (2008). “Strength and permeability of stabilized peat soil.” J. Appl. Sci., Vol. 8, No. 21, pp. 3986–3990.

    Article  Google Scholar 

  • Wong, L. S. (2010). Stabilization of peat by chemical binders and siliceous sand, PhD Thesis, University of Malaya, Kuala Lumpur, Malaysia.

    Google Scholar 

  • Yeganeh-Bakhtiary, A., Houshangi, H., Hajivalie, F., and Abolfathi, S. (2017). “A numerical study on hydrodynamics of standing waves in front of caisson breakwaters with WCSPH model.” Coastal Engineering Journal, Vo. 59, No. 1, pp. 1750005–1-1750005-31, DOI: 10.1142/S057856341750005X.

    Google Scholar 

  • YTL product data sheet (2008). Chemical compositions of the cement. YTL Cement Marketing Sdn Bhd,Kuala Lumpur, Malaysia.

  • Zainorabidin, A. and Wijeyesekera, D. C. (2008). “Geotechnical characteristics of peat.” Advances in Computing and Technology. Proceedings of the AC&T 3 rd Annual Conference, University of East London, London, UK, pp. 71–78.

    Google Scholar 

  • Zhang, J. R., Zhang, J., Lock, T. M., and Lyu, M. R. (2007). “A hybrid particle swarm optimization–backpropagation algorithm for feedforward neural network training.” Appl. Math. Comput. Vol. 185, No. 2, pp. 1026–103, DOI: 10.1016/j.amc.2006.07.025.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dehghanbanadaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghanbanadaki, A., Khari, M., Arefnia, A. et al. A Study on UCS of Stabilized Peat with Natural Filler: A Computational Estimation Approach. KSCE J Civ Eng 23, 1560–1572 (2019). https://doi.org/10.1007/s12205-019-0343-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-0343-4

Keywords

Navigation