Skip to main content
Log in

Impact of Probability Distribution of Hydraulic Conductivity on Groundwater Contaminant Transport

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this study, a simple approach using effective hydraulic conductivity (Ke) was proposed to consider the spatial variability of K, and the impact of the probability density function (PDF) of K on contaminant transport in heterogeneous soil was investigated. To analyze the impact of the PDF of K according to the spatial variability of K, non-Gaussian random fields were generated for four probability distributions (Gaussian, log-Gaussian, Weibull, and gamma), and Ke was calculated from the random fields to represent the flow through heterogeneous media. Subsequently, contaminant transport analysis was easily performed by the closed-form solution, and probabilistic analysis was performed using a Monte Carlo simulation. The results show that the statistical properties of Ke were changed by the PDF and spatial variability of Kh, and the PDF of Kh has considerable effects on the probabilistic results for contaminant transport. In particular, the PDF has a greater impact on the probabilistic results when the autocorrelation distance is smaller (i.e., highly heterogeneous soil). Therefore, the selection of the PDF of K is very important for the stochastic modeling of contaminant transport, and the gamma distribution was found to be effective in expressing the probability distribution of K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM (2010). Standard guide for risk-based corrective action applied at petroleum release sites, E1739-95, ASTM International, West Conshohocken, PA, USA.

  • Baalousha, H. and Köngeter, J. (2006). “Stochastic modelling and risk analysis of groundwater pollution using FORM coupled with automatic differentiation.” Adv. Water Resour., Vol. 29, No. 12, pp. 1815–1832, DOI: 10.1016/j.advwatres.2006.01.006.

    Article  Google Scholar 

  • Bain, L. J. and Engelhardt, M. (1980). “Probability of correct selection of weibull versus gamma based on likelihood ratio.” Communications in Statistics-Theory and Methods, Vol. 9, No. 4, pp. 375–381, DOI: 10.1080/03610928008827886.

    Article  MATH  Google Scholar 

  • Bhattacharjee, S., Ryan, J. N., and Elimelech, M. (2002). “Virus transport in physically and geochemically heterogeneous subsurface porous media.” J. Contam. Hydrol., Vol. 57, Nos. 3–4, pp. 161–187. DOI: 10.1016/S0169-7722(02)00007-4.

    Article  Google Scholar 

  • Chrysikopoulos, C. V., Kitanidis, P. K., and Roberts, P. V. (1990). “Analysis of one-dimensional solute transport through porous media with spatially variable retardation factor.” Water Resour. Res., Vol. 26, No. 3, pp. 437–446, DOI: 10.1029/WR026i003p00437.

    Article  Google Scholar 

  • Clausnitzer, V., Hopmans, W., and Starr, J. L. (1998). “Parameter uncertainty analysis of common infiltration models.” Soil Sci. Soc. Am. J., Vol. 62, pp. 1477–1487, DOI: 10.2136/sssaj1998.03615995006200060002x.

    Article  Google Scholar 

  • Cooke, R. A., Mostaghimi, S., and Woeste, F. (1995). “Effect of hydraulic conductivity probability distribution function on simulated solute leaching.” Water Environ. Res., Vol. 67, No. 2, pp. 159–168, DOI: 10.2175/106143095X131303.

    Article  Google Scholar 

  • Dagan, G. and Neuman, S. P. (2005). Subsurface flow and transport: A stochastic approach, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • DeGroot, D. J. and Baecher, G. B. (1993). “Estimating autoconvariance of In-situ soil properties.” J. Geotech. Geoenviron., Vol. 119 No. 1, pp. 147–166, DOI: 10.1061/(ASCE)0733-9410(1993)119:1(147).

    Google Scholar 

  • Durmusoglu, E. and Corapcioglu, M. Y. (2000). “Experimental study of horizontal barrier formation by colloidal silica.” J. Eenviron. Eng., Vol. 126, No. 9, pp. 833–841, DOI: 10.1061/(ASCE)0733-9372 (2000)126:9(833).

    Article  Google Scholar 

  • El-Ramly, H., Morgenstern, N. R., and Cruden, D. M. (2002). “Probabilistic slope stability analysis for practice.” Can. Geotech. J., Vol. 39, No. 3, pp. 665–683, DOI: 10.1139/t02-034.

    Article  Google Scholar 

  • Foussereau, X., Graham, W. D., and Rao, P. S. C. (2000). “Stochastic analysis of transient flow in unsaturated heterogeneous soils.” Water Resour. Res., Vol. 36, No. 4, pp. 891–910, DOI: 10.1029/1999WR900342.

    Article  Google Scholar 

  • Gelhar, L. W. (1993). Stochastic subsurface hydrology, Prentice Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  • Ghanem, R. G. and Spanos, P. D. (1991). Stochastic finite element: A spectral approach, Revised Ed., Springer, New York, NY, USA.

    Book  Google Scholar 

  • Harter, T. and Yeh, T. C. J. (1996). “Stochastic analysis of solute transport in heterogeneous, variably saturated soils.” Water Resour. Res., Vol. 32, No. 6, pp. 1585–1595, DOI: 10.1029/96WR00502.

    Article  Google Scholar 

  • Hashimoto, I., Deshpande, K. B., and Thomas, H. C. (1964). “Peclet numbers and retardation factors for ion exchange columns.” Ind. Eng. Chem. Fundam., Vol. 3, No. 3, pp. 213–218, DOI: 10.1021/i160011a007.

    Article  Google Scholar 

  • Hu, B. X., Meerschaert, M. M., Barrash, W., Hyndman, D. W., He, C., Li, X., and Guo, L. (2009). “Examining the influence of heterogeneous porosity fields on conservative solute transport.” J. Contam. Hydrol., Vol. 108, Nos. 3–4, pp. 77–88, DOI: 10.1016/j.jconhyd.2009.06.001.

    Article  Google Scholar 

  • Ingebritsen, S. E., and Sanford, W. E. (1998). Groundwater in geologic processes, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Jarvis, N. J. and Messing, I. (1995). “Near-saturated hydraulic conductivity in soils of contrasting texture measured by tension infiltrometers.” Soil Sci. Soc. Am. J., Vol. 59, pp. 27–34, DOI: 10.2136/sssaj1995. 03615995005900010004x.

    Article  Google Scholar 

  • Klute, A. and Dirksen, C. (1986). “Hydraulic conductivity and diffusivity: Laboratory methods.” Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. ASA, Madison, WI, USA, pp. 687–734.

    Google Scholar 

  • Leblanc, D. R., Garabedian, S., Hess, K., Gelhar, L. W., Quadri, R., Stollenwerk, K. G., and Wood, W. W. (1991). “Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer movement.” Water Resour. Res., Vol. 27, No. 5, pp. 895–910, DOI: 10.1029/91WR00241.

    Article  Google Scholar 

  • Li, K. S. and White, W. (1987). Probabilistic characterization of soil profiles, Report 19, Dept. Civil Engrn., Australian Defence Force Academy, Canberra, Australia.

    Google Scholar 

  • Logsdon, S. D., Allmaras, R. R., Wu, L., Swan, J. B., and Randall, G. W. (1990). “Macroporosity and its relation to saturated hydraulic conductivity under different tillage practices.” Soil Sci. Soc. Am. J., Vol. 54, pp. 1096–1101, DOI: 10.2136/sssaj1990.03615995005400040029x.

    Article  Google Scholar 

  • Matheron, G. (1967). Elements for a theory of porous media, Masson, Paris.

    Google Scholar 

  • Mohanty, B. P., Kanvar, R. S., and Horon, R. (1991). “A robust-resistant approach to interpret spatial behavior of saturated hydraulic conductivity of a glacial till soil under no-tillage system.” Water Resour. Res., Vol. 27, No. 11, pp. 2979–2992, DOI: 10.1029/91WR01720.

    Article  Google Scholar 

  • Moura, M. V. T., Leopoldo, P. R., and Marques JR., S. (1999). “An alternative to characterize the value of hydraulic conductivity in saturated soil.” Irriga, Vol. 4, No. 2, pp. 83–91.

    Google Scholar 

  • Papadrakakis, M. and Stefanou, G. (2014). Multiscale modeling and uncertainty quantification of materials and structures, Springer, Basel, Switzerland.

    Book  Google Scholar 

  • Parry, R. H. G. and Wroth, C. P. (1977). “Shear properties of soft clays, state-of-the-art paper.” Proc. 5th Int. Symposium on Soft Clay, Bangkok, Thailand.

    Google Scholar 

  • Phoon, K. K., Huang, H. W., and Quek, S. T. (2005). “Simulation of strongly non-Gaussian process using Karhunen-Loeve expansion.” Probabilist. Eng. Mech., Vol. 20, No. 2, pp. 188–198, DOI: 10.1016/j.probengmech.2005.05.007.

    Article  Google Scholar 

  • Phoon, K. K. and Kulhawy, F. H. (1999). “Characterization of geotechnical variability.” Can. Geotech. J., Vol. 36, No. 4, pp. 612–624, DOI: 10.1139/t99-038.

    Article  Google Scholar 

  • Rackwitz, R. (2000). “Reviewing probabilistic soils modeling.” Comput. Geotech., Vol. 26, Nos. 3–4, pp. 199–223, DOI: 10.1016/S0266-352X(99)00039-7.

    Article  Google Scholar 

  • Renard, P. and de Marsily, G. (1997). “Calculating equivalent permeability: A review.” Adv. Water Resour., Vol. 20, Nos. 5–6, pp. 253–278, DOI: 10.1016/S0309-1708(96)00050-4.

    Article  Google Scholar 

  • Selvadurai, A. P. S. and Selvadurai, P. A. (2010). “Surface permeability tests: Experiments and modelling for estimating effective permeability.” Proc. R. Soc. A., Vol. 466, No. 2122, pp. 2819–2846, DOI: 10.1098/rspa.2009.0475.

    Article  Google Scholar 

  • Spanos, P. D. and Ghanem, R. G. (1989). “Stochastic finite element expansion for random media.” J. Eng. Mech., Vol. 115, No. 5, pp. 1035–1053, DOI: 10.1061/(ASCE)0733-9399(1989)115:5(1035).

    Article  Google Scholar 

  • Sudret, B. and Der Kiureghian, A. (2000). Stochastic finite element methods and reliability: A state-of-the-art report, Technical Rep. UCB/SEMM-2000/08, Department of Civil and Environmental Engineering, U.C. Berkeley, Berkeley, CA, USA.

    Google Scholar 

  • U.S.EPA (1996). Soil screening guidance: Technical background document, U.S. Environmental Protection Agency, Office of Emergency Response, Washington, D.C., USA.

  • Van Genuchten, M. T. and Alves, W. J. (1982). Analytical solutions of the One-dimensional convective-dispersive solute transport equation, Technical Bull., No. 1661, United Stated Department of Agriculture, Washington D.C., USA.

  • Vanmarcke, E. H. (1983). Random fields: Analysis and synthesis, MIT Press, Cambridge, UK.

    MATH  Google Scholar 

  • Warrick, A. W. and Nielsen, D. R. (1980). “Spatial variability of soil physical properties in the field.” Applications of Soil Physics, Hillel, D. Ed., Academic Press, New York, NY, USA.

    Google Scholar 

  • Wheater, H. S., Tompkins, J. A., Van Leeuwen, M., and Butler, A. P. (2000). “Uncertainty in groundwater flow and transport modelling - a stochastic analysis of well-protection zones.” Hydrol. Process., Vol. 14, No. 11, pp. 2019–2029, DOI: 10.1002/1099-1085(20000815/30)14:11/12<2019::AID-HYP52>3.0.CO;2-H.

    Article  Google Scholar 

  • Wiener, O. (1912). Theory of the Mixing Body for the Field of Stationary Flow. Polarization and energy. Dep. Math-Physical Class Königl. Säcsh society. Wissen 32, pp. 509–604.

    Google Scholar 

  • Wilding, L. P. (1985). “Spatial variability: Its documentation, accommodation and implication to soil surveys.” Soil Spatial Variability, D. R. Nielsen, J. Bouma, Ed., Pudoc, Wageningen, Netherlands, pp. 166–194.

    Google Scholar 

  • Zhan, H. and Wheatcraft, S. (1999). “Uncertainty of one-dimensional ground-water flow in strongly heterogeneous formations.” J. Hydrol. Eng., Vol. 4, No. 2, pp. 152–159, DOI: 10.1061/(ASCE)1084-0699 (1999)4:2(152).

    Article  Google Scholar 

  • Zhang, Y. and Neuman, S. P. (1990). “A quasi-linear theory of non- Fickian and subsurface dispersion: 2. Application to anisotropic media and the Borden site.” Water Resour. Res., Vol. 26, No. 5, pp. 903–913, DOI: 10.1029/WR026i005p00903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghwan Son.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bong, T., Son, Y. Impact of Probability Distribution of Hydraulic Conductivity on Groundwater Contaminant Transport. KSCE J Civ Eng 23, 1963–1973 (2019). https://doi.org/10.1007/s12205-019-0140-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-0140-0

Keywords

Navigation