Skip to main content
Log in

Optimum Criss Crossing Cables in Multi-span Cable-stayed Bridges using Genetic Algorithms

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

A multi-objective optimization approach in order to find the optimal cable overlap length in multi-span cable-stayed bridges with criss-cross cables is presented. The multi-objective optimization is solved by considering three objectives: 1) the cost of the cable system, 2) the displacement at the top of the pylon and 3) the alternate live load on the bridge. An unconventional criss-cross cable system configuration in which cables criss-cross at the center of intermediate spans is used for a bridge with five spans and four pylons. Taking into account both the cable overlap length and the different occurrences of alternate live load, the set of optimal solutions was obtained by the use of genetic algorithms. Results indicate that the optimal cable overlap length corresponds to three criss-crossing cables that corresponds to 0.28 times the length of the central span. Research on multi-span cable-stayed bridges with criss-cross cables allows the analysis of another solution for the problem of stabilizing the displacement of intermediate pylons in this kind of bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AASHTO Standard (2002). Standard specifications for highway bridges (17 th edition), American Association of State Highway and Transportation Officials, USA.

  • Barr, A. S., Sarin, S. C., and Bishara A. G. (1989). “Procedure for structural optimization.” ACI Structural Journal, ACI, Vol. 86, pp. 524–531, DOI: 10.14359/3268.

    Google Scholar 

  • Bond, D. (1975). “An examination of the automated design of prestressed concrete bridge decks by computer.” Proceedings of The Institution of Civil Engineers-Engineering Sustainability, ICE Publishing, Vol. 59, pp. 669–697, DOI: 10.1680/iicep.1975.3634.

    Google Scholar 

  • Cai, H. and Aref, A. J. (2015). “A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges.” Structural and Multidisciplinary Optimization, Springer, Vol. 52, No. 3, pp. 583–594, DOI: 10.1007/s00158-015-1266-4.

    Article  Google Scholar 

  • Chen, D. W., Au, F. T. K., Tham, L. G., and Lee, P. K. K. (2000). “Determination of initial cable forces in prestressed concrete cablestayed bridges for given desing deck profiles using the force equilibrium method.” Computers & Structures, Elsevier, Vol. 74, No. 1, pp. 1–9, DOI: 10.1016/S0045-7949(98)00315-0.

    Article  Google Scholar 

  • Cid Montoya, M., Hernandez, S., and Nieto, F. (2018). “Shape optimization of streamlined decks of cable-stayed bridges considering aeroelastic and structural constraints.” Journal of Wind Engineering & Industrial Aerodynamics, Elsevier, Vol. 177, pp. 429–455, DOI: 10.1016/j.jweia.2017.12.018.

    Article  Google Scholar 

  • Coley, D. (1999). An introduction to genetic algorithms for scientists and engineers, World Scientific, Singapore, pp. 22–26.

    Book  Google Scholar 

  • Curran, P. (2015). “Queensferry crossing: Role of concrete in the desing and execution of the project. Multi-Span Large Bridges.” International Conference on Multi-Span Large Bridges, Pedro Pacheco and Filipe Magalhaes Editors, Taylor and Francis group, Porto, Portugal, pp. 179–186.

    Google Scholar 

  • Deb, K., Pratap, A., and Agarwal, S. (2002). “A fast and elitist multiobjective genetic algorithm NSGA-II.” Evolutionary Computation, IEEE Xplore, Vol. 6, No. 2, pp. 182–197, DOI: 10.1109/4235.996017.

    Article  Google Scholar 

  • Fabbrocino, F., Modano, M., Farina, I., Carpentieri, G., and Fraternali, F. (2017). “Optimal prestress design of composite cable-stayed bridges.” Composite Structures, Elsevier, Vol. 169, pp. 167–172, DOI: 10.1016/j.compstruct.2016.09.008.

    Article  Google Scholar 

  • Goldberg, D. and Deb, K. (1991). “A comparative analysis of selection schemes used in genetic algorithms.” Foundations of Genetic Algorithms, Elsevier, Vol. 1, pp. 69–93, DOI: 10.1016/B978-0-08-050684-5.50008-2.

    MathSciNet  Google Scholar 

  • Hare, W., Nutini, J., and Tesfamariam, S. (2013). “Survey of non-gradient optimization methods in structural engineering.” Advances in Engineering Software, Elsevier, Vol. 59, pp. 19–28, DOI: 10.1016/j.advengsoft.2013.03.001.

    Article  Google Scholar 

  • Hassan, M. M. (2013). “Optimization of stay cables in cable-stayed bridges using finite element, genetic algorithm, and B-spline combined technique.” Engineering Structures, Elsevier, Vol. 49, pp. 643–654, DOI: 10.1016/j.engstruct.2012.11.036.

    Article  Google Scholar 

  • Holgate, A. (1997). The art of structural engineering: The work of Jörg Schlaich and his team, Edition Axel Menges, Fellbach, Deutschland, pp. 294.

    Google Scholar 

  • Lounis, Z. and Cohn, M. Z. (1993). “Optimization of precast prestressed concrete bridge girder Systems.” Precast/Prestressed Concrete Institute PCI, PCI, Vol. 38, pp. 60–78, DOI: 10.15554/pcij.07011993.60.78

    Google Scholar 

  • Lute, V., Upadhyay, A., and Singh, K. (2011). “Genetic algorithmsbased optimization of cable stayed bridges.” Jounal of Software Engineering and Applications, Scientific Research Publishing Inc, Vol. 4, pp. 571–578, DOI: 10.4236/jsea.2011.410066.

    Article  Google Scholar 

  • Martínez-Martín, F. J., González-Vidosa, F., Hospitaler, A., and Yepes, V. (2013). “A parametric study of optimum tall piers for railway bridge viaducts.” Structural Engineering and Mechanics, Techno-Press, Vol. 45, pp. 723–740, DOI: 10.12989/sem.2013.45.6.723.

    Article  Google Scholar 

  • Martins, A., Simões, L., and Negrão, J. (2016). “Optimum design of concrete cable-stayed bridges with prestressed decks.” International Journal for Computational Methods in Engineering Science and Mechanics, Taylor & Francis, Vol. 17, No. 5–6, pp. 339–349, DOI: 10.1080/15502287.2016.1231237.

    Article  MathSciNet  Google Scholar 

  • Moradi, S. and Alam, M. (2017). “Multi-criteria optimization of lateral load-drift response of posttensioned steel beam-column connections.” Engineering Structures, Elsevier, Vol. 130, pp. 180–197, DOI: 10.1016/j.engstruct.2016.10.005.

    Article  Google Scholar 

  • Poirier, J., Vel, S., and Caccese, V. (2013). “Multi-objective optimization of laser-welded steel sandwich panels for static loads using a genetic algorithm.” Engineering Structures, Elsevier, Vol. 49, pp. 508–524, DOI: 10.1016/j.engstruct.2012.10.033.

    Article  Google Scholar 

  • Rabbat, B. G. and Russell, H. G. (1982). “Optimized sections for precast prestressed bridge Girders.” Precast/Prestressed Concrete Institute PCI, PCI, Vol. 27, pp. 88–108, DOI: 10.15554/pcij.07011982.88.106

    Google Scholar 

  • Rana, S., Islam, N., Ahsan, R., and Ghani, S. N. (2013). “Application of evolutionary operation to the minimum cost design of continuous prestressed concrete bridge structure.” Engineering Structures, Elsevier, Vol. 46, pp. 38–48, DOI: 10.1016/j.engstruct.2012.07.017.

    Article  Google Scholar 

  • Sanchez, J. (2001). JESA Ingeniería S.A de C.V, México City, personal communication.

    Google Scholar 

  • Secretaria de Comunicaciones y Transportes SCT. (2001). Normativa para la infraestructura del transporte. Secretaria de Comunicaciones y Transportes, Instituto Mexicano del Transporte IMT, México. (in Spanish)

  • Segal, E., Rhode-Barbarigos, L., Adriaenssens, S., and Coelho, F. (2015). “Multi-objective optimization of polyester-rope and steel-rope suspended footbridges.” Engineering Structures, Elsevier, Vol. 99, pp. 559–567, DOI: 10.1016/j.engstruct.2015.05.024.

    Article  Google Scholar 

  • Song, C., Xiao, R., and Sun, B. (2018) “Optimization of cable pretension forces in long-span cable-stayed bridges considering the counterweight.” Engineering Structures, Elsevier, Vol. 172, pp. 919–928, DOI: 10.1016/j.engstruct.2018.06.061.

    Article  Google Scholar 

  • Srinivas, V. and Ramanjaneyulu, K. (2007). “An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks.” Advances in Engineering Software, Elsevier, Vol. 38, pp. 75–87, DOI: 10.1016/j.advengsoft.2006.09.016.

    Google Scholar 

  • Wills, J. (1973). Mathematical optimization procedure and its application to the design of bridge structures, Transportation and Road Research Laboratory, Report LR555, Wokingham, UK.

    Google Scholar 

  • Yu, C. H., Das Gupta, N. C., and Paul, H. (1986). “Optimization of prestressed concrete bridge girders.” Optimization and Engineering, Taylor & Francis, Vol. 10, pp. 13–24, DOI: 10.1080/03052158608902524.

    Article  Google Scholar 

  • Zhong, J., Hu, Z., Yuan, W., and Chen, L. (2018). “System-based probabilistic optimization of fluid viscous dampers equipped in cable-stayed bridges.” Advances in Structural Engineering, SAGE Publishing, DOI: 10.1177/1369433218756429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Tolentino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arellano, H., Tolentino, D. & Gómez, R. Optimum Criss Crossing Cables in Multi-span Cable-stayed Bridges using Genetic Algorithms. KSCE J Civ Eng 23, 719–728 (2019). https://doi.org/10.1007/s12205-018-5736-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-5736-2

Keywords

Navigation