Skip to main content
Log in

Damage Evolution of Rocks under Triaxial Compressions: An NMR Investigation

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

To investigate the damage characteristics of rocks subjected to triaxial compression, marble specimens were prepared and subjected to varying levels of axial compressions with identical confining of 20 MPa. The loaded specimens were then tested using Nuclear Magnetic Resonance (NMR) technique to obtain their micro NMR parameters. The changes in transverse surface relaxation time (T2) distribution, peak area, porosity and microcracks structure distribution of the specimens due to varying compression ratios were systematically analysed. It is found that with the increase of the axial compression, the size and the number of the microcracks, porosity and the peak area increase, indicating that severer damage is induced at high compression ratio. The proportion of the large microcracks area to the total T2 area exceeds 96% in spite of the increase in compression ratio, indicating that the large microcracks dominate the degradation of the specimen. Based on the Magnetic Resonance (MR) images, the variation of the microcracks distribution can be visually presented under the different compression loadings. The NMR method presented in this study shows a good way of identifying meso-damage evolution characteristics of rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alam, M. M., Hjuler, M. L., Christensen, H. F., and Fabricius, I. L. (2014). “Petrophysical and rock-mechanics effects of CO2 injection for enhanced oil recovery: Experimental study on chalk from South Arne field, North Sea.” Journal of Petroleum Science and Engineering, Vol. 122, No. 1, pp. 468–487, DOI: 10.1016/j.petrol.2014.08.008.

    Article  Google Scholar 

  • Anovitz, L. M. and Cole, D. R. (2015). “Characterization and analysis of porosity and pore structures.” Pore-Scale Geochemical Processes, Vol. 80, No. 1, pp. 61–164, DOI: 10.2138/rmg.2015.80.04.

    Google Scholar 

  • Barbera, G., Barone, G., Crupi, V., Longo, F., Maisano, G., Majolino, D., Mazzoleni, P., Raneri, S., Teixeira, J., and Venuti, V. (2014). “A multi-technique approach for the determination of the porous structure of building stone.” European Journal of Mineralogy, Vol. 26, No. 1, pp. 189–198, DOI: 10.1127/0935-1221/2014/0026-2355.

    Article  Google Scholar 

  • Cnudde, V., Cwirzen, A., Masschaele, B., and Jacobs, P. J. S. (2009). “Porosity and microstructure characterization of building stones and concretes.” Engineering Geology, Vol. 103, Nos. 3–4, pp. 76–83, DOI: 10.1016/j.enggeo.2008.06.014.

    Article  Google Scholar 

  • Coates, G. R., Xiao, L., and Prammer, M. G. (1999). NMR logging: principles and applications, Gulf Professional Publishing.

    Google Scholar 

  • Daigle, H., Hayman, N. W., Kelly, E. D., Milliken, K. L., and Jiang, H. (2017). “Fracture capture of organic pores in shales.” Geophysical Research Letters, Vol. 44, No. 5, pp. 2167–2176, DOI: 10.1002/2016GL072165.

    Google Scholar 

  • Dao, L. Q., Cui, Y. J., Tang, A. M., Pereira, J. M., Li, X. L., and Sillen, X. (2015). “Impact of excavation damage on the thermo-hydromechanical properties of natural Boom Clay.” Engineering Geology, Vol. 195, No. 1, pp. 196–205, DOI: 10.1016/j.enggeo.2015.06.011.

    Article  Google Scholar 

  • Dunn, K. J., Bergman, D. J., and LaTorraca, G. A. (2002). Nuclear magnetic resonance: Petrophysical and logging applications, Elsevier.

    Google Scholar 

  • Fang, W. C., Jiang, H. Q., Li, J., Li, W., Li, J. J., Zhao, L., and Feng, X. N. (2016). “A new experimental methodology to investigate formation damage in clay-bearing reservoirs.” Journal of Petroleum Science and Engineering, Vol. 143, No. 1, pp. 226–234, DOI: 10.1016/j.petrol.2016.02.023.

    Article  Google Scholar 

  • Feng, X. T., Chen, S. L., and Zhou, H. (2004). “Real-time Computerized Tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion.” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 2, pp. 181–192, DOI: 10.1016/S1365-1609(03)00059-5.

    Article  Google Scholar 

  • Freire-Lista, D. M., Fort, R., and Varas-Muriel, M. J. (2015). “Freezethaw fracturing in building granites.” Cold Regions Science And Technology, Vol. 113, No. 1, pp. 40–51, DOI: 10.1016/j.coldregions.2015.01.008.

    Article  Google Scholar 

  • Frosch, G. P., Tillich, J. E., Haselmeier, R., Holz, M., and Althaus, E. (2000). “Probing the pore space of geothermal reservoir sandstones by Nuclear Magnetic Resonance.” Geothermics, Vol. 29, No. 6, pp. 671–687, DOI: 10.1016/S0375-6505(00)00031-6.

    Article  Google Scholar 

  • Gao, F., Zhou, K. P., Luo, X. W., and Zhai, J. B. (2012). “Effect of induction unloading on weakening of rock mechanics properties.” Transactions of Nonferrous Metals Society of China, Vol. 22, No. 2, pp. 419–424, DOI: 10.1016/S1003-6326(11)61193-X.

    Article  Google Scholar 

  • Kim, Y. S., Tatsuoka, F., and Ochi, K. (1994). “Deformation characteristics at small strains of sedimentary soft rocks by triaxial compression tests.” Geotechnique, Vol. 44, No. 3, pp. 461–478.

    Article  Google Scholar 

  • Lawrence, G. P. (1978). “Stability of soil pores during mercury intrusion porosimetry.” Journal of Soil Science, Vol. 29, No. 3, pp. 299–304, DOI: 10.1111/j.1365-2389.1978.tb00777.x.

    Article  Google Scholar 

  • Legchenko, A., Baltassat, J. M., Beauce, A., and Bernard, J. (2002). “Nuclear magnetic resonance as a geophysical tool for hydrogeologists.” Journal of Applied Geophysics, Vol. 50, Nos. 1–2, pp. 21–46, DOI: 10.1016/S0926-9851(02)00128-3.

    Article  Google Scholar 

  • Lenoir, N., Bornert, M., Desrues, J., Besuelle, P., and Viggiani, G. (2007). “Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock.” Strain, Vol. 43, No. 3, pp. 193–205, DOI: 10.1111/j.1475-1305.2007.00348.x.

    Article  Google Scholar 

  • Li, C. L., Prikryl, R., and Nordlund, E. (1998). “The stress-strain behaviour of rock material related to fracture under compression.” Engineering Geology, Vol. 49, Nos. 3–4, pp. 293–302, DOI: 10.1016/s0013-7952(97)00061-6.

    Article  Google Scholar 

  • Li, X. B., Weng, L., Xie, X. F., and Wu, Q. H. (2015). “Study on the degradation of hard rock with a pre-existing opening under staticdynamic loadings using nuclear magnetic resonance technique.” Chinese Journal of Rock Mechanics and Engineering, Vol. 34, No. 10, pp. 1985–1993, DOI: 10.13722/j.cnki.jrme.2015.1026

    Google Scholar 

  • Mitchell, J., Staniland, J., Chassagne, R., Mogensen, K., Frank, S., and Fordham, E. (2013). “Mapping oil saturation distribution in a limestone plug with low-field magnetic resonance.” Journal of Petroleum Science and Engineering, Vol. 108, No. 1, pp. 14–21, DOI: 10.1016/j.petrol.2013.04.008.

    Article  Google Scholar 

  • Olatinsu, O., Olorode, D., Clennell, B., Esteban, L., and Josh, M. (2017). “Lithotype characterizations by Nuclear Magnetic Resonance (NMR): A case study on limestone and associated rocks from the eastern Dahomey Basin, Nigeria.” Journal of African Earth Sciences, Vol. 129, No. 1, pp. 701–712, DOI: 10.1016/j.jafrearsci.2017.02.005.

    Article  Google Scholar 

  • Peng, R. D., Ju, Y., Mao, L. T., Liu, H. B., and Wang, P. (2014). “Damage detection of rocks under conventional triaxial compression.” ISRM Regional Symposium- EUROCK, Vigo, Spain, pp. 247–252.

    Google Scholar 

  • Qi, J. L. and Ma, W. (2007). “A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure.” Acta Geotechnica, Vol. 2, No. 3, pp. 221–226, DOI: 10.1007/s11440-007-0034-z.

    Article  Google Scholar 

  • Rabczuk, T. and Areias, P. M. A. (2006). “A new approach for modelling slip lines in geological materials with cohesive models.” International Journal for Numerical And Analytical Methods in Geomechanics, Vol. 30, No. 11, pp. 1159–1172, DOI: 10.1002/nag.522.

    Article  MATH  Google Scholar 

  • Raynaud, S., Ngan-Tillard, D., Desrues, J., and Mazerolle, F. (2008). “Brittle-to-ductile transition in Beaucaire marl from triaxial tests under the CT-scanner.” International Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 5, pp. 653–671, DOI: 10.1016/j.ijrmms.2007.08.007.

    Article  Google Scholar 

  • Schnaid, F., Prietto, P. D. M. and Consoli, N. C. (2001). “Characterization of cemented sand in triaxial compression.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, pp. 857–868, DOI: Doi 10.1061/(Asce)1090-0241(2001)127:10(857).

    Article  Google Scholar 

  • Shen, J. Y., Jimenez, R., Karakus, M., and Xu, C. S. (2014). “A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength.” Rock Mechanics and Rock Engineering, Vol. 47, No. 2, pp. 357–369, DOI: 10.1007/s00603-013-0408-5.

    Article  Google Scholar 

  • Tang, Z. Q., Zhai, C., Zou, Q. L., and Qin, L. (2016). “Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance.” Fuel, Vol. 186, No. 1, pp. 571–578, DOI: 10.1016/j.fuel.2016.08.103.

    Article  Google Scholar 

  • Tarasov, B. and Potvin, Y. (2013). “Universal criteria for rock brittleness estimation under triaxial compression.” International Journal of Rock Mechanics and Mining Sciences, Vol. 59, No. 4, pp. 57–69, DOI: 10.1016/j.ijrmms.2012.12.011.

    Article  Google Scholar 

  • Wang, Y., Li, X., Zheng, B., Zhang, B., and Wang, J. B. (2015). “Realtime ultrasonic experiments and mechanical properties of soil and rock mixture during triaxial deformation.” Geotechnique Letters, Vol. 5, No. 4, pp. 281–286, DOI: 10.1680/jgele.15.00131.

    Article  Google Scholar 

  • Wang, Z. C., Li, S. C., Qiao, L. P., and Zhao, J. G. (2013). “Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition.” Rock Mechanics and Rock Engineering, Vol. 46, No. 6, pp. 1603–1615, DOI: 10.1007/s00603-013-0387-6.

    Article  Google Scholar 

  • Wu, Y. S., Li, X., He, J. M., and Zheng, B. (2016). “Mechanical properties of Longmaxi black organic-rich shale samples from South China under uniaxial and triaxial compression states.” Energies, Vol. 9, No. 12, DOI: 10.3390/En9121088.

    Google Scholar 

  • Xiao, L., Mao, Z. Q., Zou, C. C., Jin, Y., and Zhu, J. C. (2016). “A new methodology of constructing pseudo capillary pressure (P-c) curves from nuclear magnetic resonance (NMR) logs.” Journal of Petroleum Science and Engineering, Vol. 147, No. 1, pp. 154–167, DOI: 10.1016/j.petrol.2016.05.015.

    Article  Google Scholar 

  • Yan, P., He, Q., Lu, W., He, Y., Zhou, W., and Chen, M. (2017). “Coring damage extent of rock cores retrieved from high in-situ stress condition: A case study.” KSCE Journal of Civil Engineering, Vol. 21, No. 7, pp. 2946–2957, DOI: 10.1007/s12205-017-1660-0.

    Article  Google Scholar 

  • Yang, S. Q., Jing, H. W., and Wang, S. Y. (2012). “Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression.” Rock Mechanics and Rock Engineering, Vol. 45, No. 4, pp. 583–606, DOI: 10.1007/s00603-011-0208-8.

    Article  Google Scholar 

  • Yang, S. Q., Ni, H. M., and Wen, S. (2014). “Spatial acoustic emission evolution of red sandstone during multi-stage triaxial deformation.” Journal of Central South University, Vol. 21, No. 8, pp. 3316–3326, DOI: 10.1007/s11771-014-2305-9.

    Article  Google Scholar 

  • Yin, G. Z., Qin, H., Huang, G., and Jiang, C. B. (2012). “Characterization of acoustic emission properties of gassy coal under conditions of decreasing confining pressures.” Disaster Advances, Vol. 5, No. 4, pp. 1046–1049.

    Google Scholar 

  • Yu, H. C., Liu, H. D., Huang, Z. Q., and Shi, G. C. (2017). “Experimental study on time-dependent behavior of silty mudstone from the Three Gorges Reservoir Area, China.” KSCE Journal of Civil Engineering, Vol. 21, No. 3, pp. 715–724, DOI: 10.1007/s12205-016-3645-9.

    Article  Google Scholar 

  • Yu, J., Chen, X., Cai, Y. Y., and Li, H. (2016). “Triaxial test research on mechanical properties and permeability of sandstone with a single joint filled with gypsum.” KSCE Journal of Civil Engineering, Vol. 20, No. 6, pp. 2243–2252, DOI: 10.1007/s12205-015-1663-7.

    Article  Google Scholar 

  • Zheng, W. B., Zhuang, X. Y., Tannant, D. D., Cai, Y. C., and Nunoo, S. (2014). “Unified continuum/discontinuum modeling framework for slope stability assessment.” Engineering Geology, Vol. 179, No. 1, pp. 90–101, DOI: 10.1016/j.enggeo.2014.06.014.

    Article  Google Scholar 

  • Zhuang, X. Y., Chun, J. W., and Zhu, H. H. (2014). “A comparative study on unfilled and filled crack propagation for rock-like brittle material.” Theoretical and Applied Fracture Mechanics, Vol. 72, No. 1, pp. 110–120, DOI: 10.1016/j.tafmec.2014.04.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Weng, L. & Hu, Z. Damage Evolution of Rocks under Triaxial Compressions: An NMR Investigation. KSCE J Civ Eng 22, 2856–2863 (2018). https://doi.org/10.1007/s12205-017-0766-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0766-8

Keywords

Navigation