Review: Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation

Abstract

Although deep learning methods have been widely applied in medical image lesion segmentation, it is still challenging to apply it for segmenting ischemic stroke lesions, which are different from brain tumors in lesion characteristics, segmentation difficulty, algorithm maturity, and segmentation accuracy. Three main stages are used to describe the manifestations of stroke. For acute ischemic stroke, the size of the lesions is similar to that of the brain tumor, and the current deep learning methods have been able to achieve a high segmentation accuracy. For sub-acute and chronic ischemic stroke, the segmentation results of mainstream deep learning algorithms are still unsatisfactory as lesions in these stages are small and diffuse. By using three scientific search engines including CNKI, Web of Science and Google Scholar, this paper aims to comprehensively understand the state-of-the-art deep learning algorithms applied to segment ischemic stroke lesions. For the first time, this paper discusses the current situation, challenges, and development directions of deep learning algorithms applied to ischemic stroke lesion segmentation in different stages. In the future, a system that can directly identify different stroke stages and automatically select the suitable network architecture for the stroke lesion segmentation needs to be proposed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    WANG Y, LIU H, LIU Y, et al. Deep learning framework for hemorrhagic stroke segmentation and detection [C]//International Conference on Biological Information and Biomedical Engineering. Shanghai, China: VDE, 2018: 78–83.

    Google Scholar 

  2. [2]

    DOYLE K P, SIMON R P, STENZEL-POORE M P. Mechanisms of ischemic brain damage [J]. Neuropharmacology, 2008, 55(3): 310–318.

    Article  Google Scholar 

  3. [3]

    NALL R. What are the different types of strokes? [EB/OL]. (2018-09-20) [2020-08-01]. https://www.healthline.com/health/stroke-types.

  4. [4]

    MAIER O, MENZE B H, VON DER GABLENTZ J, et al. ISLES 2015- A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI [J]. Medical Image Analysis, 2017, 35: 250–269.

    Article  Google Scholar 

  5. [5]

    REKIK I, ALLASSONNIÈRE S, CARPENTER T K, et al. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal [J]. NeuroImage: Clinical, 2012, 1(1): 164–178.

    Article  Google Scholar 

  6. [6]

    LIEW S L, ANGLIN J M, BANKS N W, et al. A large, open source dataset of stroke anatomical brain images and manual lesion segmentations [J]. Scientific Data, 2018, 5: 180011.

    Article  Google Scholar 

  7. [7]

    ZAHARCHUK G, EL MOGY I S, FISCHBEIN N J, et al. Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke [J]. Stroke, 2012, 43(7): 1843–1848.

    Article  Google Scholar 

  8. [8]

    WANG G, SONG T, DONG Q, et al. Automatic ischemic stroke lesion segmentation from computed tomography perfusion images by image synthesis and attention-based deep neural networks [J]. Medical Image Analysis, 2020, 65: 101787.

    Article  Google Scholar 

  9. [9]

    MEZZAPESA D M, PETRUZZELLIS M, LUCIVERO V, et al. Multimodal MR examination in acute ischemic stroke [J]. Neuroradiology, 2006, 48(4): 238–246.

    Article  Google Scholar 

  10. [10]

    GAO C. Research on ischemic stroke lesion segmentation based on deep learning [D]. Nanchang: Nanchang University, 2019 (in Chinese).

    Google Scholar 

  11. [11]

    GILLEBERT C R, HUMPHREYS G W, MANTINI D. Automated delineation of stroke lesions using brain CT images [J]. NeuroImage: Clinical, 2014, 4: 540–548.

    Article  Google Scholar 

  12. [12]

    DONAHUE J, WINTERMARK M. Perfusion CT and acute stroke imaging: Foundations, applications, and literature review [J]. Journal of Neuroradiology, 2015, 42(1): 21–29.

    Article  Google Scholar 

  13. [13]

    KAMNITSAS K, LEDIG C, NEWCOMBE V F J, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J]. Medical Image Analysis, 2017, 36: 61–78.

    Article  Google Scholar 

  14. [14]

    LIU L, CHEN S, ZHANG F, et al. Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality MRI [J]. Neural Computing and Applications, 2020, 32: 6545–6558

    Article  Google Scholar 

  15. [15]

    POLMAN C H, REINGOLD S C, EDAN G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria” [J]. Annals of Neurology, 2005, 58(6): 840–846.

    Article  Google Scholar 

  16. [16]

    TOMITA N, JIANG S, MAEDER M E, et al. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network [J]. NeuroImage: Clinical, 2020, 27: 102276.

    Article  Google Scholar 

  17. [17]

    ZHANG L, SONG R, WANG Y, et al. Ischemic stroke lesion segmentation using multi-plane information fusion [J]. IEEE Access, 2020, 8: 45715–45725.

    Article  Google Scholar 

  18. [18]

    ZHANG L, TANNO R, XU M C, et al. Disentangling human error from the ground truth in segmentation of medical images [DB/OL]. (2020-07-31) [2020-08-01]. https://arxiv.org/abs/2007.15963.

  19. [19]

    LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis [J]. Medical Image Analysis, 2017, 42: 60–88.

    Article  Google Scholar 

  20. [20]

    LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436–444.

    Article  Google Scholar 

  21. [21]

    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90.

    Article  Google Scholar 

  22. [22]

    RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation [M]//Medical image computing and computerassisted intervention-MICCAI 2015. Cham: Springer, 2015: 234–241.

    Google Scholar 

  23. [23]

    GHAFFARI M, SOWMYA A, OLIVER R. Automated brain tumor segmentation using multimodal brain scans: A survey based on models submitted to the BraTS 2012–2018 challenges [J]. IEEE Reviews in Biomedical Engineering, 2020, 13: 156–168.

    Article  Google Scholar 

  24. [24]

    WADHWA A, BHARDWAJ A, SINGH VERMA V. A review on brain tumor segmentation of MRI images [J]. Magnetic Resonance Imaging, 2019, 61: 247–259.

    Article  Google Scholar 

  25. [25]

    SARITHA S, AMUTHA PRABHA N. A comprehensive review: Segmentation of MRI images—brain tumor [J]. International Journal of Imaging Systems and Technology, 2016, 26(4): 295–304.

    Article  Google Scholar 

  26. [26]

    ZHAO X, WU Y, SONG G, et al. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation [J]. Medical Image Analysis, 2018, 43: 98–111.

    Article  Google Scholar 

  27. [27]

    BEN NACEUR M, AKIL M, SAOULI R, et al. Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy [J]. Medical Image Analysis, 2020, 63: 101692.

    Article  Google Scholar 

  28. [28]

    JEONG J, LEI Y, SHU H K, et al. Brain tumor segmentation using 3D mask R-CNN for dynamic susceptibility contrast enhanced perfusion imaging [J]. Proceedings of SPIE, 2020: 11317: 1131720.

    Google Scholar 

  29. [29]

    ZHOU C, DING C, WANG X, et al. One-pass multitask networks with cross-task guided attention for brain tumor segmentation [J]. IEEE Transactions on Image Processing, 2020, 29: 4516–4529.

    Article  Google Scholar 

  30. [30]

    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2015: 3431–3440.

    Google Scholar 

  31. [31]

    MILLETARI F, NAVAB N, AHMADI S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 Fourth International Conference on 3D Vision (3DV). Piscataway, NJ, USA: IEEE, 2016: 565–571.

    Google Scholar 

  32. [32]

    WINZECK S, HAKIM A, MCKINLEY R, et al. Isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI [J]. Frontiers in Neurology, 2018, 9: 679.

    Article  Google Scholar 

  33. [33]

    ISLES: ISLES challenge 2018: Ischemic stroke lesion segmentation [EB/OL]. (2018-12-05) [2020-08-01]. http://www.isles-challenge.org/.

  34. [34]

    PEREIRA S, PINTO A, AMORIM J, et al. Adaptive feature recombination and recalibration for semantic segmentation with fully convolutional networks [J]. IEEE Transactions on Medical Imaging, 2019, 38(12): 2914–2925.

    Article  Google Scholar 

  35. [35]

    ZHANG R, ZHAO L, LOU W, et al. Automatic segmentation of acute ischemic stroke from DWI using 3-D fully convolutional DenseNets [J]. IEEE Transactions on Medical Imaging, 2018, 37(9): 2149–2160.

    Article  Google Scholar 

  36. [36]

    KUMAR A, UPADHYAY N, GHOSAL P, et al. CSNet: A new DeepNet framework for ischemic stroke lesion segmentation [J]. Computer Methods and Programs in Biomedicine, 2020, 193: 105524.

    Article  Google Scholar 

  37. [37]

    CLÈRIGUES A, VALVERDE S, BERNAL J, et al. Acute and sub-acute stroke lesion segmentation from multimodal MRI [J]. Computer Methods and Programs in Biomedicine, 2020, 194: 105521.

    Article  Google Scholar 

  38. [38]

    WOO I, LEE A, JUNG S C, et al. Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: Comparison with conventional algorithms [J]. Korean Journal of Radiology, 2019, 20(8): 1275–1284.

    Article  Google Scholar 

  39. [39]

    WANG P, GAO C, ZHU L, et al. Segmentation algorithm of ischemic stroke lesion based on 3D deep residual network and cascade U-Net [J]. Computer Applications, 2019, 39(11): 3274–3279 (in Chinese).

    Google Scholar 

  40. [40]

    LIU L, WU F, WANG J. Efficient multi-kernel DCNN with pixel dropout for stroke MRI segmentation [J]. Neurocomputing, 2019, 350: 117–127.

    Article  Google Scholar 

  41. [41]

    CHEN L, BENTLEY P, RUECKERT D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks [J]. NeuroImage: Clinical, 2017, 15: 633–643.

    Article  Google Scholar 

  42. [42]

    WINZECK S, MOCKING S J, BEZERRA R, et al. Ensemble of convolutional neural networks improves automated segmentation of acute ischemic lesions using multiparametric diffusion-weighted MRI [J]. American Journal of Neuroradiology, 2019, 40(6): 938–945.

    Article  Google Scholar 

  43. [43]

    HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, NJ, USA: IEEE, 2017: 2980–2988.

    Google Scholar 

  44. [44]

    MANJÓN J V, COUPÉ P, RANIGA P, et al. MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting [J]. Computerized Medical Imaging and Graphics, 2018, 69: 43–51.

    Article  Google Scholar 

  45. [45]

    RAJAN R, SATHISH R, SHEET D. Significance of residual learning and boundary weighted loss in ischaemic stroke lesion segmentation [DB/OL]. (2019-08-13) [2020-08-01]. https://arxiv.org/abs/1908.04840.

  46. [46]

    SATHISH R, RAJAN R, VUPPUTURI A, et al. Adversarially trained convolutional neural networks for semantic segmentation of ischaemic stroke lesion using multisequence magnetic resonance imaging [C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway, NJ, USA: IEEE, 2019: 1010–1013.

    Google Scholar 

  47. [47]

    LUCAS C, KEMMLING A, MAMLOUK A M, et al. Multi-scale neural network for automatic segmentation of ischemic strokes on acute perfusion images [C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway, NJ, USA: IEEE, 2018: 1118–1121.

    Google Scholar 

  48. [48]

    ISLAM M, REN H. Class balanced PixelNet for neurological image segmentation [C]//Proceedings of the 2018 6th International Conference on Bioinformatics and Computational Biology. New York, NY, USA: ACM, 2018: 83–87.

    Google Scholar 

  49. [49]

    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [DB/OL]. (2015-04-10) [2020-08-01]. https://arxiv.org/abs/1409.1556.

  50. [50]

    PÉREZ MALLA C U, VALDÉS HERNÁNDEZ M D C, RACHMADI M F, et al. Evaluation of enhanced learning techniques for segmenting ischaemic stroke lesions in brain magnetic resonance perfusion images using a convolutional neural network scheme [J]. Frontiers in Neuroinformatics, 2019, 13: 33.

    Article  Google Scholar 

  51. [51]

    HU X, LUO W, HU J, et al. Brain SegNet: 3D local refinement network for brain lesion segmentation [J]. BMC Medical Imaging, 2020, 20(1): 17.

    Article  Google Scholar 

  52. [52]

    CHOI Y, KWON Y, PAIK M C, et al. Ischemic stroke lesion segmentation with convolutional neural networks for small data [EB/OL]. [2020-08-01]. http://www.isles-challenge.org/ISLES2017/articles/choi.pdf.

  53. [53]

    CLÈRIGUES A, VALVERDE S, BERNAL J, et al. Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks [J]. Computers in Biology and Medicine, 2019, 115: 103487.

    Article  Google Scholar 

  54. [54]

    BÖHME L, MADESTA F, SENTKER T, et al. Combining good old random forest and DeepLabv3+ for ISLES 2018 CT-based stroke segmentation [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2019: 335–342.

    Google Scholar 

  55. [55]

    CHOUDHURY A R, VANGURI R, JAMBAWALIKAR S R, et al. Segmentation of brain tumors using DeepLabv3+ [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2019: 154–167.

    Google Scholar 

  56. [56]

    KERVADEC H, BOUCHTIBA J, DESROSIERS C, et al. Boundary loss for highly unbalanced segmentation [J]. Medical Image Analysis, 2021, 67: 101851.

    Article  Google Scholar 

  57. [57]

    LIU P. Stroke lesion segmentation with 2D novel CNN pipeline and novel loss function [M]//Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer, 2019: 253–262.

    Google Scholar 

  58. [58]

    FUCHIGAMI T, AKAHORI S, OKATANI T, et al. A hyperacute stroke segmentation method using 3D U-Net integrated with physicians’ knowledge for NCCT [J]. Proceedings of SPIE, 2020, 11314: 113140G.

    Google Scholar 

  59. [59]

    GAO F, TAO M, LI X, et al. Accurate segmentation of stroke in CT image based on deep learning [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 678–684 (in Chinese).

    Google Scholar 

  60. [60]

    MAIER O, SCHRÖDER C, FORKERT N D, et al. Classifiers for ischemic stroke lesion segmentation: A comparison study [J]. Plos One, 2015, 10(12): e0145118.

    Article  Google Scholar 

  61. [61]

    LIU Z, CAO C, DING S, et al. Towards clinical diagnosis: Automated stroke lesion segmentation on multispectral MR image using convolutional neural network [J]. IEEE Access, 2018, 6: 57006–57016.

    Article  Google Scholar 

  62. [62]

    LIU L, KURGAN L, WU F, et al. Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease [J]. Medical Image Analysis, 2020, 65: 101791.

    Article  Google Scholar 

  63. [63]

    KARTHIK R, GUPTA U, JHA A, et al. A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network [J]. Applied Soft Computing, 2019, 84: 105685.

    Article  Google Scholar 

  64. [64]

    ZHOU Y, HUANG W, DONG P, et al. D-UNet: A dimension-fusion U shape network for chronic stroke lesion segmentation [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019. https://doi.org/10.1109/TCBB.2019.2939522 (published online).

  65. [65]

    XUE Y, FARHAT F G, BOUKRINA O, et al. A multipath 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images [J]. NeuroImage: Clinical, 2020, 25: 102118.

    Article  Google Scholar 

  66. [66]

    HUI H, ZHANG X, LI F, et al. A partitioning-stacking prediction fusion network based on an improved attention U-Net for stroke lesion segmentation [J]. IEEE Access, 2020, 8: 47419–47432.

    Article  Google Scholar 

  67. [67]

    YANG H, HUANG W, QI K, et al. CLCI-Net: Cross-level fusion and context inference networks for lesion segmentation of chronic stroke [M]//Medical image computing and computer assisted intervention-MICCAI 2019. Cham: Springer, 2019: 266–274.

    Google Scholar 

  68. [68]

    QI K, YANG H, LI C, et al. X-net: brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies [C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2019: 247–255.

    Google Scholar 

  69. [69]

    LIU X, YANG H, QI K, et al. MSDF-Net: Multi-scale deep fusion network for stroke lesion segmentation [J]. IEEE Access, 2019, 7: 178486–178495.

    Article  Google Scholar 

  70. [70]

    RODERICK D D C W R, WANG K M. Using cascaded networks for post-stroke lesion [EB/OL]. [2020-08-01]. http://cs230.stanford.edu/projects_spring_2018/reports/8288136.pdf.

  71. [71]

    WANG Y, WANG H, CHEN S, et al. A 3D cross-hemisphere neighborhood difference Convnet for chronic stroke lesion segmentation [C]//2019 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ, USA: IEEE, 2019: 1545–1549.

    Google Scholar 

  72. [72]

    WANG Y, KATSAGGELOS A K, WANG X, et al. A deep symmetry convnet for stroke lesion segmentation [C]//2016 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ, USA: IEEE, 2016: 111–115.

    Google Scholar 

  73. [73]

    HAVAEI M, DAVY A, WARDE-FARLEY D, et al. Brain tumor segmentation with Deep Neural Networks [J]. Medical Image Analysis, 2017, 35: 18–31.

    Article  Google Scholar 

  74. [74]

    PEREIRA S, PINTO A, ALVES V, et al. Brain tumor segmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1240–1251.

    Article  Google Scholar 

  75. [75]

    LIU Z, CAO C, DING S, et al. Towards clinical diagnosis: Automated stroke lesion segmentation on multi-spectral MR image using convolutional neural network [J]. IEEE Access, 2018, 6: 57006–57016.

    Article  Google Scholar 

  76. [76]

    GONZÁLEZ R G, HIRSCH J A, KOROSHETZ W J, et al. Acute ischemic stroke [M]. Berlin/Heidelberg: Springer, 2006.

    Google Scholar 

  77. [77]

    MOSTAPHA M, STYNER M. Role of deep learning in infant brain MRI analysis [J]. Magnetic Resonance Imaging, 2019, 64: 171–189.

    Article  Google Scholar 

  78. [78]

    YI X, WALIA E, BABYN P. Generative adversarial network in medical imaging: A review [J]. Medical Image Analysis, 2019, 58: 101552.

    Article  Google Scholar 

  79. [79]

    ISAAC J S, KULKARNI R. Super resolution techniques for medical image processing [C]//2015 International Conference on Technologies for Sustainable Development (ICTSD). Piscataway, NJ, USA: IEEE, 2015: 1–6.

    Google Scholar 

  80. [80]

    MAHAPATRA D, BOZORGTABAR B, GARNAVI R. Image super-resolution using progressive generative adversarial networks for medical image analysis [J]. Computerized Medical Imaging and Graphics, 2019, 71: 30–39.

    Article  Google Scholar 

  81. [81]

    BRIA A, MARROCCO C, TORTORELLA F. Addressing class imbalance in deep learning for small lesion detection on medical images [J]. Computers in Biology and Medicine, 2020, 120: 103735.

    Article  Google Scholar 

  82. [82]

    ANDO S, HUANG C Y. Deep over-sampling framework for classifying imbalanced data [M]//Machine learning and knowledge discovery in databases. Cham: Springer, 2017: 770–785.

    Google Scholar 

  83. [83]

    WONG S C, GATT A, STAMATESCU V, et al. Understanding data augmentation for classification: When to warp? [C]//2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA). Piscataway, NJ, USA: IEEE, 2016: 1–6.

    Google Scholar 

  84. [84]

    FRID-ADAR M, DIAMANT I, KLANG E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification [J]. Neurocomputing, 2018, 321: 321–331.

    Article  Google Scholar 

  85. [85]

    WANG S, ZHOU M, LIU Z, et al. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation [J]. Medical Image Analysis, 2017, 40: 172–183.

    Article  Google Scholar 

  86. [86]

    GUO H, LI Y, SHANG J, et al. Learning from class-imbalanced data: Review of methods and applications [J]. Expert Systems with Applications, 2017, 73: 220–239.

    Article  Google Scholar 

  87. [87]

    KAKAR M, OLSEN D R. Automatic segmentation and recognition of lungs and lesion from CT scans of thorax [J]. Computerized Medical Imaging and Graphics, 2009, 33(1): 72–82.

    Article  Google Scholar 

  88. [88]

    NARAYANA P A, CORONADO I, SUJIT S J, et al. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning [J]. Magnetic Resonance Imaging, 2020, 65: 8–14.

    Article  Google Scholar 

  89. [89]

    KIM Y, LEE J, YU I, et al. Evaluation of diffusion lesion volume measurements in acute ischemic stroke using encoder-decoder convolutional network [J]. Stroke, 2019, 50(6): 1444–1451.

    Article  Google Scholar 

  90. [90]

    LORENZO P R, NALEPA J, BOBEK-BILLEWICZ B, et al. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks [J]. Computer Methods And Programs In Biomedicine, 2019, 176: 135–148.

    Article  Google Scholar 

  91. [91]

    XU B, CHAI Y, GALARZA C M, et al. Orchestral fully convolutional networks for small lesion segmentation in brain MRI [C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Piscataway, NJ, USA: IEEE, 2018: 889–892.

    Google Scholar 

  92. [92]

    KRIVOV E, KOSTJUCHENKO V, DALECHINA A, et al. Tumor delineation for brain radiosurgery by a ConvNet and non-uniform patch generation [M]// Patch-based techniques in medical imaging. Cham: Springer, 2018: 122–129.

    Google Scholar 

  93. [93]

    GUERRERO R, QIN C, OKTAY O, et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks [J]. NeuroImage: Clinical, 2018, 17: 918–934.

    Article  Google Scholar 

  94. [94]

    LI H, PARIKH N A, WANG J, et al. Objective and automated detection of diffuse white matter abnormality in preterm infants using deep convolutional neural networks [J]. Frontiers in Neuroscience, 2019, 13: 610.

    Article  Google Scholar 

  95. [95]

    FANG M, DONG D, SUN R, et al. Using multi-task learning to improve diagnostic performance of convolutional neural networks [J]. Proceedings of SPIE, 2019, 10950: 109501V.

    Google Scholar 

  96. [96]

    SAMALA R K, CHAN H P, HADJIISKI L M, et al. Multi-task transfer learning deep convolutional neural network: Application to computer-aided diagnosis of breast cancer on mammograms [J]. Physics in Medicine & Biology, 2017, 62(23): 8894–8908.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianyu Wang 王建宇.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, S., Li, C. et al. Review: Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation. J. Shanghai Jiaotong Univ. (Sci.) (2021). https://doi.org/10.1007/s12204-021-2273-9

Download citation

Key words

  • ischemic stroke
  • deep learning
  • brain image segmentation

CLC number

  • TP 391.4
  • R 857.3

Document code

  • A