Journal of Shanghai Jiaotong University (Science)

, Volume 23, Issue 1, pp 202–208 | Cite as

Electronic Structure and Stability of Lead-free Hybrid Halide Perovskites: A Density Functional Theory Study

  • Jiayi Wu (邬嘉义)
  • Wen Qi (戚 文)
  • Zhe Luo (罗 哲)
  • Ke Liu (刘 科)
  • Hong Zhu (朱 虹)
Article
  • 1 Downloads

Abstract

The most commonly used and studied hybrid halide perovskite is ABX3, where A usually stands for CH3NH3, B for Pb, and X for I. A lead-free perovskite with high stability and ideal electronic band structure would be of essence, especially considering the toxicity of lead. In this work, we have considered 11 metal elements for the B site and three halide elements (Cl, Br, and I) including various combinations among the three halides for the X site. A total number of 99 hybrid perovskites are studied to understand how the crystal structure, band gap and stability can be tuned by the chemistry modification, i.e., the replacement of toxic element, Pb in the original MAPbX3, with non-toxic metal elements. We find that the favorable substitutes for Pb in MAPbI3 are Ge and Sn.

Key words

hybrid halide perovskites band gap phase stability density functional theory (DFT) 

CLC number

O 469 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors also thank the computing resources from Shanghai Jiao Tong University Supercomputer Center.

References

  1. [1]
    NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganicorganic hybrid nanostructured solar cells [J]. Nano Letters, 2013, 13(4): 1764–1769.CrossRefGoogle Scholar
  2. [2]
    ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014, 345(6196): 542–546.CrossRefGoogle Scholar
  3. [3]
    SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. Journal of Applied Physics, 1961, 32(3): 510–519.CrossRefGoogle Scholar
  4. [4]
    BAIKIE T, BARROW N S, FANG Y, et al. A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX 3 (X = I, Br and Cl) [J]. Journal of Materials Chemistry A, 2015, 3: 9298–9307.CrossRefGoogle Scholar
  5. [5]
    CHEN Q, MARCO N D, YANG Y, et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications [J]. Nano Today, 2015, 10(3): 355–396.CrossRefGoogle Scholar
  6. [6]
    KULKARNI S A, BAIKIE T, BOIX P P, et al. Bandgap tuning of lead halide perovskites using a sequential deposition process [J]. Journal of Materials Chemistry A, 2014, 2: 9221–9225.CrossRefGoogle Scholar
  7. [7]
    KITAZAWA N, WATANABE Y, NAKAMURA Y. Optical properties of CH3NH3PbX 3 (X = halogen) and their mixed-halide crystals [J]. Journal of Materials Science, 2012, 37(17): 3585–3587.CrossRefGoogle Scholar
  8. [8]
    MCMEEKIN D P, SADOUGHI G, REHMAN W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells [J]. Science, 2016, 351(6269): 151–155.CrossRefGoogle Scholar
  9. [9]
    KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186.CrossRefGoogle Scholar
  10. [10]
    PERDEWJ P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868.CrossRefGoogle Scholar
  11. [11]
    KRESSE G, JOUBERT D. From ultra-soft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775.CrossRefGoogle Scholar
  12. [12]
    TOM B, YANAN F, JEANNETTE M K, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications [J]. Journal of Materials Chemistry A, 2013, 1: 5628–5641.CrossRefGoogle Scholar
  13. [13]
    ONG S P, RICHARDS W D, JAIN A, et al. Python materials genomics (pymatgen): A robust, open-source Python library for materials analysis [J]. Computational Materials Science, 2013, 68: 314–319.CrossRefGoogle Scholar
  14. [14]
    MATHEW K, SINGH A K, GABRIEL J J, et al. MP interfaces: A materials project based Python tool for high-throughput computational screening of interfacial systems [J]. Computational Materials Science, 2016, 122: 183–190.CrossRefGoogle Scholar
  15. [15]
    HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened coulomb potential [J]. The Journal of Chemical Physics, 2003, 118(18): 8207–8215.CrossRefGoogle Scholar
  16. [16]
    PAIER J, MARSMAN M, HUMMER K, et al. Screened hybrid density functionals applied to solids [J]. The Journal of Chemical Physics, 2006, 124(15): 154709.CrossRefGoogle Scholar
  17. [17]
    YUAN Y, XU R, XU H T, et al. Nature of the band gap of halide perovskites ABX 3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): First-principles calculations [J]. Chinese Physics B, 2015, 24(11): 116302.CrossRefGoogle Scholar
  18. [18]
    RÜHLE S. Tabulated values of the Shockley-Queisser limit for single junction solar cells [J]. Solar Energy, 2016, 130:139–147.CrossRefGoogle Scholar
  19. [19]
    PAUWELS H, DE VOS A. Determination of the maximum efficiency solar cell structure [J]. Solid-State Electronics, 1981, 24(9): 835–843.CrossRefGoogle Scholar
  20. [20]
    KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15–50.CrossRefGoogle Scholar
  21. [21]
    CASTELLI I E, GARCÍA-LASTRA J M, THYGESEN K S, et al. Bandgap calculations and trends of organometal halide perovskites [J]. APL Materials, 2014, 2(8): 081514.CrossRefGoogle Scholar
  22. [22]
    CHEN T, FOLEY B J, IPEK B, et al. Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite [J]. Physical Chemistry Chemical Physics, 2015, 17: 31278–31286.CrossRefGoogle Scholar
  23. [23]
    UMARI P, MOSCONI E, ANGELIS E D. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications [J]. Scientific Reports, 2014, 4: 4467.CrossRefGoogle Scholar
  24. [24]
    LIU M, RONG Z Q, MALIK R, et al. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations [J]. Energy & Environmental Science, 2015, 8(3): 964–974.CrossRefGoogle Scholar
  25. [25]
    OKU T. Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells [C]//Solar Cells-New Approaches and Reviews. Rijeka: InTech, 2015: 77–101.Google Scholar
  26. [26]
    CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite [J]. Advanced Energy Materials, 2015, 5(15): 1500477.CrossRefGoogle Scholar

Copyright information

© Shanghai Jiaotong University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiayi Wu (邬嘉义)
    • 1
  • Wen Qi (戚 文)
    • 1
  • Zhe Luo (罗 哲)
    • 2
  • Ke Liu (刘 科)
    • 1
  • Hong Zhu (朱 虹)
    • 1
    • 3
  1. 1.University of Michigan - Shanghai Jiao Tong University Joint InstituteShanghai Jiao Tong UniversityShanghaiChina
  2. 2.National Engineering Research Center of Light AlloysShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Materials Genome Initiative CenterShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations