Skip to main content
Log in

Revised Three-Dimensional Navier-Stokes Characteristic Boundary Conditions for Intense Reactive Turbulence

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The three-dimensional Navier-Stokes characteristic boundary conditions (3D-NSCBC), although physically reasonable and popular in many applications, may encounter the instability problem in simulating complex flows, especially for large Reynolds number reactive turbulence where locally the strong reversed flow appears at the outflow boundary surfaces. In the present work, a revised 3D-NSCBC strategy is proposed based on the kinematic relation in different moving coordinate systems. Following this strategy, a systematic formulation is presented for the outflow surface with local reversed flow and can be easily extended to the coupled edge and corner boundaries. Direct numerical simulation (DNS) tests of flow with different turbulence intensities are carried out. Compared with the conventional 3D-NSCBC, the newly proposed method exhibits satisfactory performance to confine numerical instability in the strong reversed flow region. The results confirm the robustness and effectiveness of this newly proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, 114(2): 185–200.

    Article  MathSciNet  MATH  Google Scholar 

  2. HU F Q. On absorbing boundary conditions for linearized euler equations by a perfectly matched layer [J]. Journal of Computational Physics, 1996, 129(1): 201–219.

    Article  MathSciNet  MATH  Google Scholar 

  3. TAM C K W, AURIANULT L, CAMBULI F. Perfectly matched layer as an absorbing bound-ary condition for the linearized euler equations in open and ducted domains [J]. Journal of Computational Physics, 1998, 144(1): 213–234.

    Article  MathSciNet  Google Scholar 

  4. KREISS H. Initial boundary value problems for hyperbolic systems [J]. Communications on Pure and Applied Mathematics, 1970, 23(3): 277–298.

    Article  MathSciNet  MATH  Google Scholar 

  5. ENGQUIST B, MAJDA A J. Absorbing boundary conditions for the numerical simulation of waves [J]. Mathematics of Computation, 1977, 31(139): 629–651.

    Article  MathSciNet  MATH  Google Scholar 

  6. GUSTAFSSON B, OLIGER J. Stable boundary approximations for implicit time discretizations for gas dynamics [J]. SIAM Journal on Scientific and Statistical Computing, 1982, 3(4): 408–421.

    Article  MathSciNet  MATH  Google Scholar 

  7. HIGDON R L. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation [J]. Mathematics of Computation, 1986, 47(176): 437–459.

    MathSciNet  MATH  Google Scholar 

  8. THOMPSON K W. Time dependent boundary conditions for hyperbolic systems [J]. Journal of Computational Physics, 1987, 68(1): 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  9. THOMPSON K W. Time-dependent boundary conditions for hyperbolic systems, II [J]. Journal of Computational Physics, 1990, 89(2): 439–461.

    Article  MathSciNet  MATH  Google Scholar 

  10. POINSOT T J, LELE S K. Boundary conditions for direct simulations of compressible viscous flows [J]. Journal of Computational Physics, 1992, 101(1): 104–129.

    Article  MathSciNet  MATH  Google Scholar 

  11. NICOUD F. Defining wave amplitude in characteristic boundary conditions [J]. Journal of Computational Physics, 1999, 149(2): 418–422.

    Article  MathSciNet  MATH  Google Scholar 

  12. VALORANI M, FAVINI B. On the numerical integration of multidimensional, initial boundary value problems for the euler equations in quasilinear form [J]. Numerical Methods for Partial Differential Equations, 1998, 14(6): 781–814.

    Article  MathSciNet  MATH  Google Scholar 

  13. SUTHERLAND J C, KENNEDY C A. Improved boundary conditions for viscous, reacting, compressible flows [J]. Journal of Computational Physics, 2003, 191(2): 502–524.

    Article  MATH  Google Scholar 

  14. PROSSER R. Improved boundary conditions for the direct numerical simulation of turbulent subsonic flows. I. inviscid flows [J]. Journal of Computational Physics, 2005, 207(2): 736–768.

    Article  MATH  Google Scholar 

  15. YOO C S, WANG Y, TROUVÉ A, et al. Characteristic boundary conditions for direct simulations of turbulent counterflow flames [J]. Combustion Theory and Modelling, 2005, 9(4): 617–646.

    Article  MathSciNet  MATH  Google Scholar 

  16. YOO C S, IM H G. Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects [J]. Combustion Theory and Modelling, 2007, 11(2): 259–286.

    Article  MathSciNet  MATH  Google Scholar 

  17. LODATO G, DOMINGO P, VERVISCH L. Threedimensional boundary conditions for direct and largeeddy simulation of compressible viscous flows [J]. Journal of Computational Physics, 2008, 227(10): 5105–5143.

    Article  MathSciNet  MATH  Google Scholar 

  18. COUSSEMENT A, GICQUEL O, CAUDAL J, et al. Three-dimensional boundary conditions for numerical simulations of reactive compressible flows with complex thermochemistry [J]. Journal of Computational Physics, 2012, 231(17): 5571–5611.

    Article  MathSciNet  MATH  Google Scholar 

  19. TODA H B, CABRIT O, TRUFFIN K, et al. Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow [J]. Physics of Fluids, 2014, 26(7): 1760–1765.

    Google Scholar 

  20. JIN T, LUO K, LU S, et al. DNS investigation on flame structure and scalar dissipation of a supersonic lifted hydrogen jet flame in heated coflow [J]. International Journal of Hydrogen Energy, 2013, 38(23): 9886–9896.

    Article  Google Scholar 

  21. LEE D, HUH K Y. DNS analysis of propagation speed and conditional statistics of turbulent premixed flame in a planar impinging jet [J]. Proceedings of the Combustion Institute, 2011, 33(1): 1301–1307.

    Article  Google Scholar 

  22. LAI J, CHAKRABORTY N. Effects of lewis number on head on quenching of turbulent premixed flames: A direct numerical simulation analysis [J]. Flow Turbulence and Combustion, 2016, 96(2): 279–308.

    Article  Google Scholar 

  23. LAI J, CHAKRABORTY N. Statistical behavior of scalar dissipation rate in head-on quenching of turbulent premixed flames: A direct numerical simulation analysis [J]. Combustion Science and Technology, 2016, 188(2): 250–276.

    Article  Google Scholar 

  24. RUDY D H, STRIKWERDA J C. A nonreflecting outflow boundary condition for subsonic navier-stokes calculations [J]. Journal of Computational Physics, 1980, 36(1): 55–70.

    Article  MathSciNet  MATH  Google Scholar 

  25. POINSOT T, VEYNANTE D. Theoretical and numerical combustion [M]. PA: RT Edwards, Inc., 2005.

    Google Scholar 

  26. JENKINS K W, CANT R S. Direct numerical simulation of turbulent ame kernels [C]//Recent Advances in DNS and LES. Berlin: Springer Netherlands, 1999: 3583–3604.

    Google Scholar 

  27. RUTLAND C J, CANT R S. Turbulent transport in premixed ames [C]//In Proceedings of the Summer Program, Stanford University/NASA Ames. San Francisco: Centre for Turbulence Research, 1994: 75–94.

    Google Scholar 

  28. CHAKRABORTY N, CANT R S. Effects of lewis number on flame surface density transport in turbulent premixed combustion [J]. Combustion and Flame, 2011, 158(9): 1768–1787.

    Article  Google Scholar 

  29. CHAKRABORTY N, LIPANTNIKOV A N. Statistics of conditional uid velocity in the corrugated flamelets regime of turbulent premixed combustion: A direct numerical simulation study [J]. Journal of Combustion, 2011: 1–13.

    Google Scholar 

  30. WRAY A A. Minimal storage time-advancement schemes for spectral methods [C]//NASA Ames Research Report. Moffett Field: NASA Ames Research Center, 1991: 1–9.

    Google Scholar 

  31. CHAKRABOTY N, CANT R S. Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflowoutflow configuration [J]. Combustion and Flame, 2004, 137(1): 129–147.

    Article  Google Scholar 

  32. CHAKRABOTY N, CANT R S. A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation [J]. Physics of Fluids, 2007, 19: 363–371.

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to Prof. Chakraborty (Newcastle Univ.) for sharing the DNS code for numerical tests. LW acknowledges the funding support by National Science Foundation China (NSFC) under the grant No. 91441116, NSFC-CNRS joint research project (No. 11611130099, NSFC China, and PRC 2016-2018 LATUMAR “Turbulence lagrangienne: ´etudes num´eriques et applications environnementales marines”, CNRS, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipo Wang  (王利坡).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Wang, L. Revised Three-Dimensional Navier-Stokes Characteristic Boundary Conditions for Intense Reactive Turbulence. J. Shanghai Jiaotong Univ. (Sci.) 23, 190–201 (2018). https://doi.org/10.1007/s12204-018-1925-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-018-1925-x

Key words

CLC number

Navigation