Thermal Transport in Nanoporous Yttria-Stabilized Zirconia by Molecular Dynamics Simulation

  • Shuaishuai Zhao (赵帅帅)
  • Cheng Shao (邵 成)
  • Saeid Zahiri
  • Changying Zhao (赵长颖)
  • Hua Bao (鲍 华)
Article
  • 1 Downloads

Abstract

Yttria-stabilized zirconia (YSZ) is widely used as thermal barrier coatings (TBCs) to reduce heat transfer between hot gases and metallic components in gas-turbine engines. Porous structure can generally reduce the lattice thermal conductivity of bulk material, so porous YSZ can be potentially used as TBCs with better thermal performance. In this work, we investigate the thermal conductivity of nanoporous YSZ using the nonequilibrium molecular dynamics (NEMD) simulation, and comprehensively discuss the effects of cross-sectional area, pore size, structure length, porosity, Y2O3 concentration and temperature on the thermal conductivity. To compare with the results of the NEMD simulation, we solve the heat diffusion equation and the gray Boltzmann transport equation (BTE) to calculate the thermal conductivity of the same porous structure. From the results, we find that the thermal conductivity of YSZ has a weak dependence on the structure length at the length range from 10 to 26 nm, which indicates that the majority of heat carriers have very short mean free path (MFP) but there exists small percentage (about 3%) of phonons with longer MFP (larger than 10 nm) contributing to the thermal conductivity. The thermal conductivity predicted by NEMD simulation is smaller than that of solving heat diffusion equation (diffusive limit) with the same porous structure. It shows that the presence of pores affects phonon scattering and further affects the thermal conductivity of nanoporous YSZ. The results agree well with the solution of gray BTE with a average MFP of 0.6 nm. The thermal conductivity of nanoporous YSZ weakly depends on the Y2O3 concentration and temperature, which shows the phonons with very short MFP play the major contribution to the thermal conductivity. The results help to better understand the heat transfer in porous YSZ structure and develop better TBCs.

Key words

thermal conductivity nanoporous molecular dynamics mean free path (MFP) yttria-stabilized zirconia (YSZ) 

CLC number

TK 124 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

Simulations were performed with computing resources granted by the High Performance Computing Center at Shanghai Jiao Tong University.

References

  1. [1]
    PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280–284.CrossRefGoogle Scholar
  2. [2]
    CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings [J]. Journal of the European Ceramic Society, 2004, 24(1): 1–10.CrossRefGoogle Scholar
  3. [3]
    NATH S, MANNA I, MAJUMDAR J D. Nanomechanical behavior of yttria stabilized zirconia (YSZ) based thermal barrier coating [J]. Ceramics International, 2015, 41(4): 5247–5256.CrossRefGoogle Scholar
  4. [4]
    NAIT-ALI B, HABERKO K, VESTEGHEM H, et al. Thermal conductivity of highly porous zirconia [J]. Journal of the European Ceramic Society, 2006, 26(16): 3567–3574.CrossRefGoogle Scholar
  5. [5]
    PIA G, CASNEDI L, SANNA U. Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions [J]. Ceramics International, 2016, 42(5): 5802–5809.CrossRefGoogle Scholar
  6. [6]
    SCHLICHTING K W, PADTURE N P, KLEMENS P G. Thermal conductivity of dense and porous yttriastabilized zirconia [J]. Journal of Materials Science, 2001, 36(12): 3003–3010.CrossRefGoogle Scholar
  7. [7]
    PIA G. High porous yttria-stabilized zirconia with aligned pore channels: Morphology directionality influence on heat transfer [J]. Ceramics International, 2016, 42(10): 11674–11681.CrossRefGoogle Scholar
  8. [8]
    NAN C W, BIRRINGER R, CLARKE D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance [J]. Journal of Applied Physics, 1997, 81(10): 6692–6699.CrossRefGoogle Scholar
  9. [9]
    BOURRET J, TESSIER-DOYEN N, NAIT-ALI B, et al. Effect of the pore volume fraction on the thermal conductivity and mechanical properties of kaolin-based foams [J]. Journal of the European Ceramic Society, 2013, 33(9): 1487–1495.CrossRefGoogle Scholar
  10. [10]
    CHUNG J D, KAVIANY M. Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon [J]. International Journal of Heat and Mass Transfer, 2000, 43(4): 521–538.CrossRefMATHGoogle Scholar
  11. [11]
    HSIEH T Y, LIN H, HSIEH T J, et al. Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores [J]. Journal of Applied Physics, 2012, 111(12): 124329.CrossRefGoogle Scholar
  12. [12]
    WANG M, PAN N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams [J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325–1331.CrossRefMATHGoogle Scholar
  13. [13]
    WANG M, WANG J, PAN N, et al. Three-dimensional effect on the effective thermal conductivity of porous media [J]. Journal of Physics D: Applied Physics, 2006, 40(1): 260.CrossRefGoogle Scholar
  14. [14]
    GUO Y, WANG M. Lattice Boltzmann modeling of phonon transport [J]. Journal of Computational Physics, 2016, 315: 1–15.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    LEE J H, GALLI G A, GROSSMAN J C. Nanoporous Si as an efficient thermoelectric material [J]. Nano Letters, 2008, 8(11): 3750–3754.CrossRefGoogle Scholar
  16. [16]
    HE Y, DONADIO D, LEE J H, et al. Thermal transport in nanoporous silicon: Interplay between disorder at mesoscopic and atomic scales [J]. ACS Nano, 2011, 5(3): 1839–1844.CrossRefGoogle Scholar
  17. [17]
    LAU K C, DUNLAP B I. Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids [J]. Journal of Physics: Condensed Matter, 2011, 23(3): 035401.Google Scholar
  18. [18]
    FREEMAN J J, ANDERSON A C. Thermal conductivity of amorphous solids [J]. Physical Review B, 1986, 34(8): 5684.CrossRefGoogle Scholar
  19. [19]
    HE Y, DONADIO D, GALLI G. Morphology and temperature dependence of the thermal conductivity of nanoporous SiGe [J]. Nano Letters, 2011, 11(9): 3608–3611.CrossRefGoogle Scholar
  20. [20]
    ZHOU XW, JONES R E. Effects of nano-void density, size and spatial population on thermal conductivity: A case study of GaN crystal [J]. Journal of Physics: Condensed Matter, 2012, 24(32): 325804.Google Scholar
  21. [21]
    BRINKMAN H W, BRIELS W J, VERWEIJ H. Molecular dynamics simulations of yttriastabilized zirconia [J]. Chemical Physics Letters, 1995, 247(4/5/6): 386–390.CrossRefGoogle Scholar
  22. [22]
    SCHELLING P K, PHILLPOT S R. Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation [J]. Journal of the American Ceramic Society, 2001, 84(12): 2997–3007.CrossRefGoogle Scholar
  23. [23]
    CARSON J K, LOVATT S J, TANNER D J, et al. An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations [J]. International Journal of Refrigeration, 2003, 26(8): 873–880.CrossRefGoogle Scholar
  24. [24]
    MURTHY J Y, MATHUR S R. Computation of submicron thermal transport using an unstructured finite volume method [J]. Journal of Heat Transfer, 2002, 124(6): 1176–1181.CrossRefGoogle Scholar
  25. [25]
    TIAN Z, HU H, SUN Y. A molecular dynamics study of effective thermal conductivity in nanocomposites [J]. International Journal of Heat and Mass Transfer, 2013, 61: 577–582.CrossRefGoogle Scholar
  26. [26]
    PLIMPTON S. Fast parallel algorithms for shortrange molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19.CrossRefMATHGoogle Scholar
  27. [27]
    VAN BEEST B W H, KRAMER G J, VAN SANTEN R A. Force fields for silicas and aluminophosphates based on ab initio calculations [J]. Physical Review Letters, 1990, 64: 1955.CrossRefGoogle Scholar
  28. [28]
    ALDEBERT P, TRAVERSE J P. Structure and ionic mobility of zirconia at high temperature [J]. Journal of the American Ceramic Society, 1985, 68(1): 34–40.CrossRefGoogle Scholar
  29. [29]
    MINERVINI L, GRIMES R W, SICKAFUS K E. Disorder in pyrochlore oxides [J]. Journal of the American Ceramic Society, 2000, 83(8): 1873–1878.CrossRefGoogle Scholar
  30. [30]
    SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Comparison of atomic-level simulation methods for computing thermal conductivity [J]. Physical Review B, 2002, 65(14): 144306.CrossRefGoogle Scholar
  31. [31]
    LUKES J R, TIEN C L. Molecular dynamics simulation of thermal conduction in nanoporous thin films [J]. Microscale Thermophysical Engineering, 2004, 8(4): 341–359.CrossRefGoogle Scholar
  32. [32]
    ZHANG X, BAO H, HU M. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon [J]. Nanoscale, 2015, 7(14): 6014–6022.CrossRefGoogle Scholar

Copyright information

© Shanghai Jiaotong University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuaishuai Zhao (赵帅帅)
    • 1
  • Cheng Shao (邵 成)
    • 1
  • Saeid Zahiri
    • 1
  • Changying Zhao (赵长颖)
    • 2
  • Hua Bao (鲍 华)
    • 1
  1. 1.University of Michigan - Shanghai Jiao Tong University Joint InstituteShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Mechanical and Power EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations