Advertisement

Photoacoustic Imaging by Use of Micro-Electro-Mechanical System Scanner

  • Sung-Liang Chen (陈松良)
Article

Abstract

Photoacoustic imaging acquires the absorption contrast of biological tissue with ultrasound resolution. It has been broadly investigated in biomedicine for animal and clinical studies. Recently, a micro-electro-mechanical system (MEMS) scanner has been utilized in photoacoustic imaging systems to enhance their performance and extend the realm of applications. The review provides a recap of recent developments in photoacoustic imaging using MEMS scanner, from instrumentation to applications. The topics include the design of MEMS scanner, its use in photoacoustic microscopy, miniature imaging probes, development of dual-modality systems, as well as cutting-edge bio-imaging studies.

Key words

photoacoustic imaging micro-electro-mechanical system (MEMS) photoacoustic microscopy highspeed imaging photoacoustic endoscopy 

CLC number

TP 751.2 TN 65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    XU M, WANG L V. Photoacoustic imaging in biomedicine [J]. Review of Scientific Instruments, 2006, 77(4): 041101.CrossRefGoogle Scholar
  2. [2]
    WANG L V, HU S. Photoacoustic tomography: In vivo imaging from organelles to organs [J]. Science, 2012, 335(6075): 1458–1462.CrossRefGoogle Scholar
  3. [3]
    ZHANG E Z, LAUFER J G, PEDLEY R B, et al. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy [J]. Physics in Medicine and Biology, 2009, 54(4): 1035–1046.CrossRefGoogle Scholar
  4. [4]
    HU S, WANG L V. Photoacoustic imaging and characterization of the microvasculature [J]. Journal of Biomedical Optics, 2010, 15(1): 011101.CrossRefGoogle Scholar
  5. [5]
    DEÁN-BEN X L, SELA G, LAURI A, et al. Functional optoacoustic neuro-tomography for scalable wholebrain monitoring of calcium indicators [J]. Light: Science & Applications, 2016, 5: e16201.Google Scholar
  6. [6]
    HU S, RAO B, MASLOV K, et al. Label-free photoacoustic ophthalmic angiography [J]. Optics Letters, 2010, 35(1): 1–3.CrossRefGoogle Scholar
  7. [7]
    JIAO S, JIANG M, HU J, et al. Photoacoustic ophthalmoscopy for in vivo retinal imaging [J]. Optics Express, 2010, 18(4):3967–3972.CrossRefGoogle Scholar
  8. [8]
    SETHURAMAN S, AGLYAMOV S R, AMIRIAN J H, et al. Intravascular photoacoustic imaging using an IVUS imaging catheter [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(5): 978–986.CrossRefGoogle Scholar
  9. [9]
    JANSEN K, VAN DER STEEN A F W, VAN BEUSEKOM H M M, et al. Intravascular photoacoustic imaging of human coronary atherosclerosis [J]. Optics Letters, 2011, 36(5): 597–599.CrossRefGoogle Scholar
  10. [10]
    ZHANG H F, MASLOV K, STOICA G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging [J]. Nature Biotechnology, 2006, 24(7): 848–851.CrossRefGoogle Scholar
  11. [11]
    MASLOV K, ZHANG H F, HU S, et al. Opticalresolution photoacoustic microscopy for in vivo imaging of single capillaries [J]. Optics Letters, 2008, 33(9): 929–931.CrossRefGoogle Scholar
  12. [12]
    WANG L V, YAO J. A practical guide to photoacoustic tomography in the life sciences [J]. Nature Methods, 2016, 13(8): 627–638.MathSciNetCrossRefGoogle Scholar
  13. [13]
    HAJIREZA P, SHI W, ZEMP R J. Real-time handheld optical-resolution photoacoustic microscopy [J]. Optics Express, 2011, 19(21): 20097–20102.CrossRefGoogle Scholar
  14. [14]
    YANG J M, CHEN R, FAVAZZ C, et al. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy [J]. Optics Express, 2012, 20(21): 23944–23953.CrossRefGoogle Scholar
  15. [15]
    XIE Z, JIAO S, ZHANG H F, et al. Laser-scanning optical-resolution photoacoustic microscopy [J]. Optics Letters, 2009, 34(12): 1771–1773.CrossRefGoogle Scholar
  16. [16]
    CAI D, LI Z, LI Y, et al. Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution [J]. Optics Express, 2017, 25(2):1421–1434.CrossRefGoogle Scholar
  17. [17]
    CAI D, LI Z, CHEN S L. Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique [J]. Chinese Optics Letters, 2015, 13(10): 101101.CrossRefGoogle Scholar
  18. [18]
    HU S, MASLOV K, WANG L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed [J]. Optics Letters, 2011, 36(7): 1134–1136.CrossRefGoogle Scholar
  19. [19]
    WANG L, MASLOV K, YAO J, et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy [J]. Optics Letters, 2011, 36(2): 139–141.CrossRefGoogle Scholar
  20. [20]
    LI L, YEH C, HU S, et al. Fully motorized opticalresolution photoacoustic microscopy [J]. Optics Letters, 2014, 39(7): 2117–2120.CrossRefGoogle Scholar
  21. [21]
    DENG P, MA W. Nonlinearity investigation of the MEMS scanning mirror with electrostatic comb drive [C]// Proceedings of the 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Hawaii: IEEE, 2014: 212–215.Google Scholar
  22. [22]
    NAONO T, FUJII T, ESASHI M, et al. A large-scanangle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film [J]. Journal of Micromechanics and Microengineering, 2014, 24(1): 015010.CrossRefGoogle Scholar
  23. [23]
    PAN Y, XIE H, FEDDER G K. Endoscopic optical coherence tomography based on a microelectromechanical mirror [J]. Optics Letters, 2001, 26(24): 1966–1968.CrossRefGoogle Scholar
  24. [24]
    JUNG W, TANG S, MCCORMIC D T, et al. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy [J]. Optics Letters, 2008, 33(12): 1324–1326.CrossRefGoogle Scholar
  25. [25]
    PIYAWATTANAMETHA W, RA H, MANDELLA M J, et al. 3-D near-infrared fluorescence imaging using a mems-based miniature dual-axis confocal microscope [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(5): 1344–1350.CrossRefGoogle Scholar
  26. [26]
    QIU Z, PIYAWATTANAMETHA W. New endoscopic imaging technology based on MEMS sensors and actuators [J]. Micromachines, 2017, 8(7): 210.CrossRefGoogle Scholar
  27. [27]
    XU S, HUANG C H, ZOU J. Microfabricated water-immersible scanning mirror with a small form factor for handheld ultrasound and photoacoustic microscopy [J]. Journal of Micro/Nanolithography, MEMS, MOEMS, 2015, 14(3): 035004.CrossRefGoogle Scholar
  28. [28]
    HUANG C H, YAO J, WANG L V, et al. A waterimmersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications [J]. Microsystem Technologies, 2013, 19(4): 577–582.CrossRefGoogle Scholar
  29. [29]
    KIM J Y, LEE C, PARK K, et al. A PDMS-based 2-axis waterproof scanner for photoacoustic microscopy [J]. Sensors, 2015, 15(5): 9815–9826.CrossRefGoogle Scholar
  30. [30]
    XI L, SUN J, ZHU Y, et al. Photoacoustic imaging based on MEMS mirror scanning [J]. Biomedical Optics Express, 2010, 18(23): 1278–1283.CrossRefGoogle Scholar
  31. [31]
    CHEN S L, XIE Z, LING T, et al. Miniaturized alloptical photoacoustic microscopy based on microelectromechanical systems mirror scanning [J]. Optics Letters, 2012, 37(20): 4263–4265.CrossRefGoogle Scholar
  32. [32]
    CHEN S L, XIE Z, GUO L J, et al. A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components [J]. Photoacoustics, 2013, 1(2): 30–35.CrossRefGoogle Scholar
  33. [33]
    LI H, DONG B, ZHANG Z, et al. A transparent broadband ultrasonic detector based on an optical microring resonator for photoacoustic microscopy [J]. Scientific Reports, 2014, 4: 4496.CrossRefGoogle Scholar
  34. [34]
    YAO J, HUANG C H, WANG L, et al. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible mems scanning mirror [J]. Journal of Biomedical Optics, 2012, 17(8): 080505.CrossRefGoogle Scholar
  35. [35]
    KIM J Y, LEE C, PARK K, et al. Fast opticalresolution photoacoustic microscopy using a 2-axis water-proofing mems scanner [J]. Scientific Reports, 2015, 5: 7932.CrossRefGoogle Scholar
  36. [36]
    YANG H, XI L, SAMUELSON S, et al. Handheld miniature probe integrating diffuse optical tomography with photoacoustic imaging through aMEMS scanning mirror [J]. Biomedical Optics Express, 2013, 4(3): 427–432.CrossRefGoogle Scholar
  37. [37]
    LIN L, ZHANG P, XU S, et al. Handheld opticalresolution photoacoustic microscopy [J]. Journal of Biomedical Optics, 2017, 22(4): 041002.CrossRefGoogle Scholar
  38. [38]
    PARK K, KIM J Y, LEE C, et al. Development of a photoacoustic handheld probe using 2-axis MEMS scanner [C]//Photons Plus Ultrasound: Imaging and Sensing 2017. San Francisco: SPIE, 2017: 100641N.Google Scholar
  39. [39]
    KIM S, LEE C, KIM J Y, et al. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography [J]. Journal of Biomedical Optics, 2016, 21(10): 106001.MathSciNetCrossRefGoogle Scholar
  40. [40]
    XI L, GROBMYER S R, WU L, et al. Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging [J]. Optics Express, 2012, 20(8): 8726–8731.CrossRefGoogle Scholar
  41. [41]
    YAO J, WANG L, YANG J M, et al. High-speed labelfree functional photoacoustic microscopy of mouse brain in action [J]. Nature Methods, 2015, 12(5): 407–410.CrossRefGoogle Scholar
  42. [42]
    ZHANG H F, MASLOV K, SIVARAMAKRISHNAN M, et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy [J]. Applied Physics Letters, 2007, 90: 053901.CrossRefGoogle Scholar

Copyright information

© Shanghai Jiaotong University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Michigan - Shanghai Jiao Tong University Joint InstituteShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations