Sliding mode robust fault-tolerant control for uncertain systems with time delay

  • Pu Yang (杨 浦)
  • Jiangfan Ni (倪江帆)
  • Xu Pan (潘 旭)
  • Ruicheng Guo (郭瑞诚)


Considering the modeling uncertainties and external disturbance, a kind of sliding mode robust H fault-tolerant control method for time delay system with actuator fault is proposed. The upper-bound of the uncertainties is considered as a known constant, while the upper-bound of the actuator fault is unknown. A sufficient condition for the existence of an integral sliding mode dynamics is given in terms of linear matrix inequality (LMI). A novel adaptive law is given to estimate the unknown upper-bound of faults. On this basis, a type of sliding mode robust H fault-tolerant control law is designed to guarantee the asymptotic stability and the H performance index of the system. Finally, the simulation on quad-rotor semi-physical platform demonstrates the reliability and validity of the method.

Key words

fault-tolerant control sliding mode control time delay robust H 

CLC number

TP 273 

Document code


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ZHAO B, LI Y C. Active substituting decentralized fault-tolerant control for reconfigurable manipulators with multi-sensor failures [J]. Control and Decision, 2014, 29(2): 226–230 (in Chinese).Google Scholar
  2. [2]
    YUAN K, HU S S. Multi-fault tolerance of aircraft control surface based on fault-tolerant multi-agent system [J]. Electronics Optics and Control, 2011, 18(5): 46–49 (in Chinese).Google Scholar
  3. [3]
    JIN X Z, YANG G H, CHANG X H, et al. Robust fault-tolerant H Control with adaptive compensation [J]. Acta Automatica Sinica, 2013, 39(1): 31–42 (in Chinese).MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    SHEN Y, LIU L J, DOWELL E H. Adaptive faulttolerant robust control for a linear system with adaptive fault identification [J]. IET Control Theory Application, 2013, 7(2): 246–252.MathSciNetCrossRefGoogle Scholar
  5. [5]
    SUN H B, LI S H, SUN C Y. Adaptive fault-tolerant controller design for air breathing hypersonic vehicle with input saturation [J]. Systems Engineering and Electronics, 2013, 24(3): 488–499.CrossRefGoogle Scholar
  6. [6]
    SU X M, WANG M Y, DONG H G, et al. Robust fault-tolerant control for time-varying descriptor systems [J]. Mathematics in Practice and Theory, 2014, 49(10): 1869–1875 (in Chinese).Google Scholar
  7. [7]
    CHEN X Q, HU F F, SUN Y H, et al. Robust faulttolerant attitude control of three-axis stabilized satellite [C]//Proceedings of the 26th Chinese Control and Decision Conference. [s.l.]: IEEE, 2014: 1254–1259.Google Scholar
  8. [8]
    CHEN G, SONG Y D. Robust fault-tolerant cooperative control of multi-agent systems with actuator faults [C]//Proceedings of the 26th Chinese Control and Decision Conference. [s.l.]: IEEE, 2014: 2891–2896.Google Scholar
  9. [9]
    AGHILI F. Optimal and fault-tolerant torque control of servo motors subject to voltage and current limits [J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1440–1448.CrossRefGoogle Scholar
  10. [10]
    SONG X Q, LIU C S, SUN J H, et al. Optimal faulttolerant tracking control of systems with parameter uncertainty [C]//Proceedings of the IEEE International Conference on System Science and Engineering (ICSSE). [s.l.]: IEEE, 2014: 119–123.Google Scholar
  11. [11]
    ZHAO D J, WANG Y J, LIU L, et al. Robust faulttolerant control of launch vehicle via GPI observer and integral sliding mode control [J]. Asian Journal of Control, 2013, 15(2): 614–623.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    MIRSHAMS M, KHOSROJERDI M, HASANI M. Passive fault-tolerant sliding mode attitude control for flexible spacecraft with faulty thrusters [J]. Journal of Aerospace Engineering, 2013, 228(12): 2343–2357.Google Scholar
  13. [13]
    ALMEIDA S, ARAUJO R E. Fault-tolerant control using sliding mode techniques applied to multi-motor electric vehicle [C]//Proceedings of the IEEE Conference of the Industrial Electronics Society. [s.l.]: IEEE, 2013: 3530–3535.Google Scholar
  14. [14]
    HUA C C, WANG Q G, GUAN X P. Memoryless state feedback controller design for time delay systems with matched uncertain nonlinearities [J]. IEEE Transactions on Automatic Control, 2008, 53(3): 801–808.MathSciNetCrossRefGoogle Scholar
  15. [15]
    LIAN J G, DIMIROVSKI G M, ZHAO J. Robust H SMC of uncertain switched systems with time delay [C]//Proceedings of the American Control Conference. Washington, USA: IEEE, 2008: 11–13.CrossRefGoogle Scholar
  16. [16]
    WANG C H, HUANG T M. Delay-independent variable structure control of time delay systems with mismatched uncertainties [C]//Proceedings of 46th Conference on Decision and Control. New Orleans, USA: IEEE, 2007: 2065–2070.Google Scholar
  17. [17]
    XIA Y Q, JIA Y M. Robust sliding-mode control of uncertain time delay systems: An LMI approach [J]. IEEE Transactions on Automatic Control, 2003, 48(5): 1086–1092.MathSciNetGoogle Scholar
  18. [18]
    CHOI H H. LMI-Based sliding surface design for integral sliding mode control of mismatched uncertain systems [J]. IEEE Transactions on Automatic Control, 2007, 52(4): 736–742.MathSciNetCrossRefGoogle Scholar
  19. [19]
    YANG P, NI J F, JIANG B, et al. The adaptive global robust sliding mode control for uncertain systems with time-varying delay [J]. Control and Decision, 2014, 29(9): 1688–1692 (in Chinese).Google Scholar
  20. [20]
    XIE L H, FU M Y, DE SOUZA C E. H control and quadratic stabilization of systems with parameter uncertainty via output feedback [J]. IEEE Transactions on Automatic Control, 1992, 37(8): 1253–1256.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Pu Yang (杨 浦)
    • 1
  • Jiangfan Ni (倪江帆)
    • 1
  • Xu Pan (潘 旭)
    • 1
  • Ruicheng Guo (郭瑞诚)
    • 1
  1. 1.Academy of AutomationNanjing University of Aeronautics & AstronauticsNanjingChina

Personalised recommendations