LixNa2−xW4O13 nanosheet for scalable electrochromic device

Abstract

The printed electronics technology can be used to efficiently construct smart devices and is dependent on functional inks containing well-dispersed active materials. Two-dimensional (2D) materials are promising functional ink candidates due to their superior properties. However, the majority 2D materials can disperse well only in organic solvents or in surfactant-assisted water solutions, which limits their applications. Herein, we report a lithium (Li)-ion exchange method to improve the dispersity of the Na2W4O13 nanosheets in pure water. The Li-ion-exchanged Na2W4O13 (LixNa2−xW4O13) nanosheets show highly stable dispersity in water with a zeta potential of −55 mV. Moreover, this aqueous ink can be sprayed on various substrates to obtain a uniform LixNa2−xW4O13 nanosheet film, exhibiting an excellent electrochromic performance. A complementary electrochromic device containing a LixNa2−xW4O13 nanosheet film as an electrochromic layer and Prussian white (PW) as an ion storage layer exhibits a large optical modulation of 75% at 700 nm, a fast switching response of less than 2 s, and outstanding cyclic stability. This Na2W4O13-based aqueous ink exhibits considerable potential for fabricating large-scale and flexible electrochromic devices, which would meet the practical application requirements.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Baeg K J, Caironi M, Noh Y Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Advanced Materials, 2013, 25(31): 4210–1244

    Article  Google Scholar 

  2. 2.

    Perelaer J, Smith P J, Mager D, Soltman D, Volkman S K, Subramanian V, Korvink J G, Schubert U S. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 2010, 20(39): 8446–8453

    Article  Google Scholar 

  3. 3.

    Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7(9): 2944–2950

    Article  Google Scholar 

  4. 4.

    Scardaci V, Coull R, Lyons P E, Rickard D, Coleman J N. Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small, 2011, 7(18): 2621–2628

    Article  Google Scholar 

  5. 5.

    Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123–2126

    Article  Google Scholar 

  6. 6.

    van Osch T H J, Perelaer J, de Laat A W M, Schubert U S. Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Advanced Materials, 2008, 20(2): 343–345

    Article  Google Scholar 

  7. 7.

    Ding T, Liu K, Li J, Xue G, Chen Q, Huang L, Hu B, Zhou J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Advanced Functional Materials, 2017, 27 (22): 1700551–1700555

    Article  Google Scholar 

  8. 8.

    Fang YS, Wu ZC, Li J, Jiang F Y, Zhang K, Zhang Y L, Zhou Y H, Zhou J, Hu B. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Advanced Functional Materials, 2018, 28(9): 1705409–1705416

    Article  Google Scholar 

  9. 9.

    Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515–3535

    Article  Google Scholar 

  10. 10.

    Berggren M, Nilsson D, Robinson N D. Organic materials for printed electronics. Nature Materials, 2007, 6(1): 3–5

    Article  Google Scholar 

  11. 11.

    Bonaccorso F, Bartolotta A, Coleman J N, Backes C. 2D-crystal-based functional inks. Advanced Materials, 2016, 28(29): 6136–6166

    Article  Google Scholar 

  12. 12.

    Cai X, Luo Y, Liu B, Cheng H M. Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47(16): 6224–6266

    Article  Google Scholar 

  13. 13.

    Xiao X, Song H, Lin S, Zhou Y, Zhan X, Hu Z, Zhang Q, Sun J, Yang B, Li T, Jiao L, Zhou J, Tang J, Gogotsi Y. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7(1): 11296–11303

    Article  Google Scholar 

  14. 14.

    Hu Z, Xiao X, Jin H, Li T, Chen M, Liang Z, Guo Z, Li J, Wan J, Huang L, Zhang Y, Feng G, Zhou J. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nature Communications, 2017, 8(1): 15630–15638

    Article  Google Scholar 

  15. 15.

    Zhao Y, Zhu K. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. Journal of the American Chemical Society, 2014, 136(35): 12241–12244

    Article  Google Scholar 

  16. 16.

    Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nature Nanotechnology, 2014, 9(4): 257–261

    Article  Google Scholar 

  17. 17.

    Li T, Jin H, Liang Z, Huang L, Lu Y, Yu H, Hu Z, Wu J, Xia B Y, Feng G, Zhou J. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale, 2018, 10(15): 6844–6849

    Article  Google Scholar 

  18. 18.

    Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang Y, Niu S, Liu Y, Zhu J, Liu X, Wang G. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angewandte Chemie International Edition, 2018, 57(18): 5076–5080

    Article  Google Scholar 

  19. 19.

    Kelly A G, Hallam T, Backes C, Harvey A, Esmaeily A S, Godwin I, Coelho J, Nicolosi V, Lauth J, Kulkarni A, Kinge S, Siebbeles L D A, Duesberg G S, Coleman J N. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356 (6333): 69–73

    Article  Google Scholar 

  20. 20.

    Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Romaguera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C. Heterostructures produced from nanosheet-based inks. Nano Letters, 2014, 14(7): 3987–3992

    Article  Google Scholar 

  21. 21.

    Zhang C J, Kremer M P, Seral-Ascaso A, Park S H, McEvoy N, Anasori B, Gogotsi Y, Nicolosi V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Advanced Functional Materials, 2018, 28(9): 1705506–1705515

    Article  Google Scholar 

  22. 22.

    Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nature Nanotechnology, 2017, 12(12): 1124–1129

    Article  Google Scholar 

  23. 23.

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568

    Article  Google Scholar 

  24. 24.

    Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4(1): 1716–1722

    Article  Google Scholar 

  25. 25.

    Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568–571

    Article  Google Scholar 

  26. 26.

    Mendoza-Sánchez B, Hanlon D, Coelho J, Brien S O, Pettersson H. An investigation of the energy storage properties of a 2D α-MoO3-SWCNTs composite films. 2D Materials, 2016, 4(1): 015005–015012

    Article  Google Scholar 

  27. 27.

    Lin S, Shih C J, Strano M S, Blankschtein D. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. Journal of the American Chemical Society, 2011, 133(32): 12810–12823

    Article  Google Scholar 

  28. 28.

    Wang J L, Lu Y R, Li H H, Liu J W, Yu S H. Large area co-assembly of nanowires for flexible transparent smart windows. Journal of the American Chemical Society, 2017, 139(29): 9921–9926

    Article  Google Scholar 

  29. 29.

    Cong S, Tian Y, Li Q, Zhao Z, Geng F. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Advanced Materials, 2014, 26(25): 4260–4267

    Article  Google Scholar 

  30. 30.

    Shendage S S, Patil V L, Vanalakar S A, Patil S P, Harale N S, Bhosale J L, Kim J H, Patil P S. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensors and Actuators B, Chemical, 2017, 240: 426–433

    Article  Google Scholar 

  31. 31.

    Sun S, Watanabe M, Wu J, An Q, Ishihara T. Ultrathin WO3$0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity. Journal of the American Chemical Society, 2018, 140(20): 6474–6482

    Article  Google Scholar 

  32. 32.

    Liang L, Li K, Xiao C, Fan S, Liu J, Zhang W, Xu W, Tong W, Liao J, Zhou Y, Ye B, Xie Y. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. Journal of the American Chemical Society, 2015, 137(8): 3102–3108

    Article  Google Scholar 

  33. 33.

    Wang J, Zhang L, Yu L, Jiao Z, Xie H, Lou X W, Sun X W. A bifunctional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5(1): 4921–4927

    Article  Google Scholar 

  34. 34.

    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169–11186

    Article  Google Scholar 

  35. 35.

    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50

    Article  Google Scholar 

  36. 36.

    Blöchl P E. Projector augmented-wave method. Physical Review B, 1994, 50(24): 17953–17979

    Article  Google Scholar 

  37. 37.

    Perdew J P, Burke K, Ernzerhof M. Generialized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865–3868

    Article  Google Scholar 

  38. 38.

    Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. Journal of Chemical Physics, 2014, 140(8): 084106–084113

    Article  Google Scholar 

  39. 39.

    Kim J, Kwon S, Cho D H, Kang B, Kwon H, Kim Y, Park S O, Jung G Y, Shin E, Kim W G, Lee H, Ryu G H, Choi M, Kim T H, Oh J, Park S, Kwak S K, Yoon S W, Byun D, Lee Z, Lee C. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nature Communications, 2015, 6(1): 8294–8302

    Article  Google Scholar 

  40. 40.

    Smith R J, Lotya M, Coleman J N. The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics, 2010, 12(12): 125008–125018

    Article  Google Scholar 

  41. 41.

    Jiao Z, Wang J, Ke L, Liu X, Demir H V, Yang M F, Sun X W. Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochimica Acta, 2012, 63: 153–160

    Article  Google Scholar 

  42. 42.

    Van der Ven A, Thomas J C, Xu Q, Bhattacharya J. Linking the electronic structure of solids to their thermodynamic and kinetic properties. Mathematics and Computers in Simulation, 2010, 80(7): 1393–1410

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Van der Ven A, Thomas J C, Xu Q, Swoboda B, Morgan D. Nondilute diffusion from first principles: Li diffusion in LixTiS2. Physical Review B, 2008, 78(10): 104306

    Article  Google Scholar 

  44. 44.

    Cai G, Darmawan P, Cheng X, Lee P S. Inkjet printed large area multifunctional smart windows. Advanced Energy Materials, 2017, 7(14): 1602598–1602605

    Article  Google Scholar 

  45. 45.

    Liang L, Zhang J, Zhou Y, Xie J, Zhang X, Guan M, Pan B, Xie Y. High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3 · 2H2O ultrathin nanosheets. Scientific Reports, 2013, 3(1): 1936–1943

    Article  Google Scholar 

  46. 46.

    Azam A, Kim J, Park J, Novak T G, Tiwari A P, Song S H, Kim B, Jeon S. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Letters, 2018, 18(9): 5646–5651

    Article  Google Scholar 

  47. 47.

    Yang P, Sun P, Chai Z, Huang L, Cai X, Tan S, Song J, Mai W. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angewandte Chemie International Edition, 2014, 53(44): 11935–11939

    Article  Google Scholar 

  48. 48.

    Granqvist C G. Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films, 2014, 564: 1–38

    Article  Google Scholar 

  49. 49.

    Llordés A, Garcia G, Gazquez J, Milliron D J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature, 2013, 500(7462): 323–326

    Article  Google Scholar 

  50. 50.

    Zhang S, Cao S, Zhang T, Fisher A, Lee J Y. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy & Environmental Science, 2018, 11(10): 2884–2892

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11874036, 51872101, 51672097, 51972124, and 51902115), the National Program for Support of Top-notch Young Professionals, the Program for HUST Academic Frontier Youth Team, the Fundamental Research Funds for the Central Universities (HUST: 2017KFXKJC001 and 2018KFYXKJC025), the Guangdong Province Key Area R&D Program (No. 2019B010940001), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01N111), and Basic Research Project of Shenzhen, China (No. JCYJ20170412171430026). We wish to thank the facility support from the Center for Nanoscale Characterization & Devices, WNLO of HUST and the Analytical and Testing Center of HUST.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jia Li or Jun Zhou.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Jia Li obtained his Ph.D. degree from Tsinghua University in 2009. Then he was a Postdoctoral Research Fellow in Fritz Haber Institute of the Max Planck Society in Berlin, Germany from 2009 to 2010. He is currently an associate professor of Tsinghua Shenzhen International Graduate School, Tsinghua University. His research interest is applying first-principles methods to study the relationship between the structure and the performance of energy storage and conversion for two-dimensional materials.

Jun Zhou is a professor in Wuhan National Laboratory for Optoelectronics at Huazhong University of Science and Technology. He received his bachelor degree (2001) in materials physics and Ph.D. degree (2007) in materials physics and chemistry from the Sun Yat-sen University. He was a visiting student (2005–2006), a research scientist (2007–2009) in Georgia Institute of Technology. His recent research interest is energy harvesting materials and devices.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Yang, X., Jin, H. et al. LixNa2−xW4O13 nanosheet for scalable electrochromic device. Front. Optoelectron. (2020). https://doi.org/10.1007/s12200-020-1033-z

Download citation

Keywords

  • printed electronics technology
  • two-dimensional material
  • ink
  • ion exchange
  • electrochromic device