Graphene-based all-optical modulators

Abstract

All-optical devices, which are utilized to process optical signals without electro-optical conversion, play an essential role in the next generation ultrafast, ultralow power-consumption optical information processing systems. To satisfy the performance requirement, nonlinear optical materials that are associated with fast response, high nonlinearity, broad wavelength operation, low optical loss, low fabrication cost, and integration compatibility with optical components are required. Graphene is a promising candidate, particularly considering its electrically or optically tunable optical properties, ultrafast large nonlinearity, and high integration compatibility with various nanostructures. Thus far, three all-optical modulation systems utilize graphene, namely free-space modulators, fiber-based modulators, and on-chip modulators. This paper aims to provide a broad view of state-of-the-art researches on the graphene-based all-optical modulation systems. The performances of different devices are reviewed and compared to present a comprehensive analysis and perspective of graphene-based all-optical modulation devices.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43

    Google Scholar 

  2. 2.

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526

    Google Scholar 

  3. 3.

    He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L, Cai X. Highperformance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s−1 and beyond. Nature Photonics, 2019, 13(5): 359–364

    Google Scholar 

  4. 4.

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725): 101–104

    Google Scholar 

  5. 5.

    Li M, Wang L, Li X, Xiao X, Yu S. Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications. Photonics Research, 2018, 6(2): 109–116

    Google Scholar 

  6. 6.

    Alloatti L, Palmer R, Diebold S, Pahl K P, Chen B, Dinu R, Fournier M, Fedeli J M, Zwick T, Freude W, Koos C, Leuthold J. 100 GHz silicon-organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173

    Google Scholar 

  7. 7.

    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528

    Google Scholar 

  8. 8.

    Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M, Koch U, Salamin Y, Hoessbacher C, Haffner C, Elder D L, Dalton L R, Leuthold J. High-speed plasmonic modulator in a single metal layer. Science, 2017, 358(6363): 630–632

    Google Scholar 

  9. 9.

    Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556 (7702): 483–486

    Google Scholar 

  10. 10.

    Davoodi F, Granpayeh N. All optical logic gates — a tutorial. International Journal of Information & Communication Technology Research, 2012, 43(3): 65–98

    Google Scholar 

  11. 11.

    Singh P, Tripathi D K, Jaiswal S, Dixit H K. All-optical logic gates: designs, classification, and comparison. Advances in Optical Technologies, 2014, 2014: 275083

    Google Scholar 

  12. 12.

    Minzioni P, Lacava C, Tanabe T, Dong J, Hu X, Csaba G, Porod W, Singh G, Willner A E, Almaiman A, Torres-Company V, Schröder J, Peacock A C, Strain M J, Parmigiani F, Contestabile G, Marpaung D, Liu Z, Bowers J E, Chang L, Fabbri S, Ramos Vázquez M, Bharadwaj V, Eaton S M, Lodahl P, Zhang X, Eggleton B J, Munro W J, Nemoto K, Morin O, Laurat J, Nunn J. Roadmap on all-optical processing. Journal of Optics, 2019, 21(6): 063001

    Google Scholar 

  13. 13.

    Chai Z, Hu X, Wang F, Niu X, Xie J, Gong Q. Ultrafast all-optical switching. Advanced Optical Materials, 2017, 5(7): 1600665

    Google Scholar 

  14. 14.

    Sasikala V, Chitra K. All optical switching and associated technologies: a review. Journal of Optics, 2018, 47(3): 307–317

    Google Scholar 

  15. 15.

    Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084

    Google Scholar 

  16. 16.

    Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219

    Google Scholar 

  17. 17.

    Gholipour B, Zhang J, MacDonald K F, Hewak D W, Zheludev N I. An all-optical, non-volatile, bidirectional, phase-change metaswitch. Advanced Materials, 2013, 25(22): 3050–3054

    Google Scholar 

  18. 18.

    Chai Z, Zhu Y, Hu X, Yang X, Gong Z, Wang F, Yang H, Gong Q. On-chip optical switch based on plasmon-photon hybrid nanostructure-coated multicomponent nanocomposite. Advanced Optical Materials, 2016, 4(8): 1159–1166

    Google Scholar 

  19. 19.

    Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483

    Google Scholar 

  20. 20.

    Vo T D, Pant R, Pelusi M D, Schröder J, Choi D Y, Debbarma S K, Madden S J, Luther-Davies B, Eggleton B J. Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. Optics Letters, 2011, 36(5): 710–712

    Google Scholar 

  21. 21.

    Hou J, Chen L, Dong W, Zhang X. 40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide. Optics Express, 2016, 24(3): 2701–2711

    Google Scholar 

  22. 22.

    Chai Z, Zhu Y, Hu X Y, Yang X Y, Gong Z B, Wang F F, Yang H, Gong Q H. On-chip optical switch based on plasmon-photon hybrid nanostructure-coated multicomponent nanocomposite. Advanced Optical Materials, 2016, 4(8): 1159–1166

    Google Scholar 

  23. 23.

    Wang F, Hu X, Song H, Li C, Yang H, Gong Q. Ultralow-power all-optical logic data distributor based on resonant excitation enhanced nonlinearity by upconversion radiative transfer. Advanced Optical Materials, 2017, 5(20): 1700360

    Google Scholar 

  24. 24.

    Chai Z, Hu X, Wang F, Li C, Ao Y, Wu Y, Shi K, Yang H, Gong Q. Ultrafast on-chip remotely-triggered all-optical switching based on epsilon-near-zero nanocomposites. Laser & Photonics Reviews, 2017, 11(5): 1700042

    Google Scholar 

  25. 25.

    Yang X, Hu X, Yang H, Gong Q. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics, 2017, 6(1): 365–376

    Google Scholar 

  26. 26.

    Dong W, Huang Z, Hou J, Santos R, Zhang X. Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Optics Letters, 2018, 43(9): 2150–2153

    Google Scholar 

  27. 27.

    Guo B, Xiao Q L, Wang S H, Zhang H. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser & Photonics Reviews, 2019, 13(12): 1800327

    Google Scholar 

  28. 28.

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033

    Google Scholar 

  29. 29.

    Tarruell L, Greif D, Uehlinger T, Jotzu G, Esslinger T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483(7389): 302–305

    Google Scholar 

  30. 30.

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8 (12): 899–907

    Google Scholar 

  31. 31.

    Yu S, Wu X, Wang Y, Guo X, Tong L. 2D materials for optical modulation: challenges and opportunities. Advanced Materials, 2017, 29(14): 1606128

    Google Scholar 

  32. 32.

    Jin L, Ma X, Zhang H, Zhang H, Chen H, Xu Y. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Optics Express, 2018, 26 (24): 31244–31252

    Google Scholar 

  33. 33.

    Koo J, Park J, Lee J, Jhon Y M, Lee J H. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Optics Express, 2016, 24(10): 10575–10589

    Google Scholar 

  34. 34.

    Li Z, Li R, Pang C, Dong N, Wang J, Yu H, Chen F. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Optics Express, 2019, 27(6): 8727–8737

    Google Scholar 

  35. 35.

    Liu M, Tang R, Luo A P, Xu W C, Luo Z C. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers. Photonics Research, 2018, 6(10): C1–C7

    Google Scholar 

  36. 36.

    Liu M, Zheng X W, Qi Y L, Liu H, Luo A P, Luo Z C, Xu W C, Zhao C J, Zhang H. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Optics Express, 2014, 22(19): 22841–22846

    Google Scholar 

  37. 37.

    Liu W, Pang L, Han H, Liu M, Lei M, Fang S, Teng H, Wei Z. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Optics Express, 2017, 25(3): 2950–2959

    Google Scholar 

  38. 38.

    Qi Y L, Liu H, Cui H, Huang Y Q, Ning Q Y, Liu M, Luo Z C, Luo A P, Xu W C. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser. Optics Express, 2015, 23(14): 17720–17726

    Google Scholar 

  39. 39.

    Yan P, Lin R, Ruan S, Liu A, Chen H. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Optics Express, 2015, 23(1): 154–164

    Google Scholar 

  40. 40.

    Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Research, 2015, 3(3): A79–A86

    Google Scholar 

  41. 41.

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4(1): 1811

    Google Scholar 

  42. 42.

    Tan W C, Huang L, Ng R J, Wang L, Hasan D M N, Duffin T J, Kumar K S, Nijhuis C A, Lee C, Ang K W. A black phosphorus carbide infrared phototransistor. Advanced Materials, 2018, 30(6): 1705039

    Google Scholar 

  43. 43.

    Talebi H, Dolatyari M, Rostami G, Manzuri A, Mahmudi M, Rostami A. Fabrication of fast mid-infrared range photodetector based on hybrid graphene-PbSe nanorods. Applied Optics, 2015, 54(20): 6386–6390

    Google Scholar 

  44. 44.

    Jabbarzadeh F, Siahsar M, Dolatyari M, Rostami G, Rostami A. Fabrication of new mid-infrared photodetectors based on graphene modified by organic molecules. IEEE Sensors Journal, 2015, 15 (5): 2795–2800

    Google Scholar 

  45. 45.

    Huang L, Tan W C, Wang L, Dong B, Lee C, Ang K W. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Applied Materials & Interfaces, 2017, 9(41): 36130–36136

    Google Scholar 

  46. 46.

    Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F. Black phosphorus mid-infrared photodetectors with high gain. Nano Letters, 2016, 16(7): 4648–4655

    Google Scholar 

  47. 47.

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8 (12): 899–907

    Google Scholar 

  48. 48.

    Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238

    Google Scholar 

  49. 49.

    Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2017, 6(6): 1205–1218

    Google Scholar 

  50. 50.

    Ma Z, Hemnani R, Bartels L, Agarwal R, Sorger V J. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration. Applied Physics A, Materials Science & Processing, 2018, 124(2): 126

    Google Scholar 

  51. 51.

    Fang Y, Ge Y, Wang C, Zhang H. Mid-infrared photonics using 2D materials: status and challenges. Laser & Photonics Reviews, 2020, 14(1): 1900098

    Google Scholar 

  52. 52.

    Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    Google Scholar 

  53. 53.

    Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z, Xu Q, Tang D, Loh K P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4(3): 297–307

    Google Scholar 

  54. 54.

    Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083

    Google Scholar 

  55. 55.

    Bao Q, Zhang H, Yang J, Wang S, Tang D, Jose R, Ramakrishna S, Lim C T, Loh K P. Graphene-polymer nanofiber membrane for ultrafast photonics. Advanced Functional Materials, 2010, 20(5): 782–791

    Google Scholar 

  56. 56.

    Zhang H, Tang D, Knize R J, Zhao L, Bao Q, Loh K P. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters, 2010, 96(11): 111112

    Google Scholar 

  57. 57.

    Liu X M, Yang H R, Cui Y D, Chen G W, Yang Y, Wu X Q, Yao X K, Han D D, Han X X, Zeng C, Guo J, Li W L, Cheng G, Tong L M. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Scientific Reports, 2016, 6(1): 26024

    Google Scholar 

  58. 58.

    Wu J, Yang Z, Qiu C, Zhang Y, Wu Z, Yang J, Lu Y, Li J, Yang D, Hao R, Li E, Yu G, Lin S. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 2018, 10(17): 8023–8030

    Google Scholar 

  59. 59.

    Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nature Nanotechnology, 2020, 15(2): 118–124

    Google Scholar 

  60. 60.

    Wang X, Gan X. Graphene integrated photodetectors and optoelectronic devices -a review. Chinese Physics B, 2017, 26(3): 034201

    Google Scholar 

  61. 61.

    Youngblood N, Anugrah Y, Ma R, Koester S J, Li M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Letters, 2014, 14(5): 2741–2746

    Google Scholar 

  62. 62.

    Gao Y, Shiue R J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D Jr, Hone J, Englund D. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001–2005

    Google Scholar 

  63. 63.

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67

    Google Scholar 

  64. 64.

    Liang G, Hu X, Yu X, Shen Y, Li L H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F, Wang Q J. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photonics, 2015, 2(11): 1559–1566

    Google Scholar 

  65. 65.

    Phare C T, Daniel Lee Y H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514

    Google Scholar 

  66. 66.

    Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159–166

    Google Scholar 

  67. 67.

    Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411

    Google Scholar 

  68. 68.

    Lin H, Song Y, Huang Y, Kita D, Deckoff-Jones S, Wang K, Li L, Li J, Zheng H, Luo Z, Wang H, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J. Chalcogenide glass-on-graphene photonics. Nature Photonics, 2017, 11(12): 798–805

    Google Scholar 

  69. 69.

    Wu J, Lu Y, Feng S, Wu Z, Lin S, Hao Z, Yao T, Li X, Zhu H, Lin S. The interaction between quantum dots and graphene. Applications in Graphene-Based Solar Cells and Photodetectors, 2018, 28 (50): 1804712

    Google Scholar 

  70. 70.

    Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C, Romagnoli M. Graphene-silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44

    Google Scholar 

  71. 71.

    Cheng Z, Zhu X, Galili M, Frandsen L H, Hu H, Xiao S, Dong J, Ding Y, Oxenløwe L K, Zhang X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi: https://doi.org/10.1515/nanoph-2019-0381

  72. 72.

    Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z. Graphene photonic crystal fibre with strong and tunable light-matter interaction. Nature Photonics, 2019, 13(11): 754–759

    Google Scholar 

  73. 73.

    Cheng Z, Cao R, Guo J, Yao Y, Wei K, Gao S, Wang Y, Dong J, Zhang H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi: https://doi.org/10.1515/nanoph-2019-0510

  74. 74.

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Google Scholar 

  75. 75.

    Geim A K. Graphene: status and prospects. Science, 2009, 324 (5934): 1530–1534

    Google Scholar 

  76. 76.

    Luo S, Wang Y, Tong X, Wang Z. Graphene-based optical modulators. Nanoscale Research Letters, 2015, 10(1): 199

    Google Scholar 

  77. 77.

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355

    Google Scholar 

  78. 78.

    Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F. Measurement of the optical conductivity of graphene. Physical Review Letters, 2008, 101(19): 196405

    Google Scholar 

  79. 79.

    Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192–200

    Google Scholar 

  80. 80.

    Xing G, Guo H, Zhang X, Sum T C, Huan C H. The physics of ultrafast saturable absorption in graphene. Optics Express, 2010, 18(5): 4564–4573

    Google Scholar 

  81. 81.

    Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402

    Google Scholar 

  82. 82.

    Dong P, Qian W, Liang H, Shafiiha R, Feng N N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858

    Google Scholar 

  83. 83.

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

    Google Scholar 

  84. 84.

    Gan X, Zhao C, Wang Y, Mao D, Fang L, Han L, Zhao J. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2(5): 468–471

    Google Scholar 

  85. 85.

    Wang Y, Gan X, Zhao C, Fang L, Mao D, Xu Y, Zhang F, Xi T, Ren L, Zhao J. All-optical control of microfiber resonator by graphene’s photothermal effect. Applied Physics Letters, 2016, 108(17): 171905

    Google Scholar 

  86. 86.

    Qiu C, Yang Y, Li C, Wang Y, Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046

    Google Scholar 

  87. 87.

    Tielrooij K J, Hesp N C H, Principi A, Lundeberg M B, Pogna E A A, Banszerus L, Mics Z, Massicotte M, Schmidt P, Davydovskaya D, Purdie D G, Goykhman I, Soavi G, Lombardo A, Watanabe K, Taniguchi T, Bonn M, Turchinovich D, Stampfer C, Ferrari A C, Cerullo G, Polini M, Koppens F H L. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nature Nanotechnology, 2018, 13(1): 41–46

    Google Scholar 

  88. 88.

    Soref R, Bennett B. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129

    Google Scholar 

  89. 89.

    Weis P, Garcia-Pomar J L, Höh M, Reinhard B, Brodyanski A, Rahm M. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano, 2012, 6(10): 9118–9124

    Google Scholar 

  90. 90.

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W. Graphene based all-optical spatial terahertz modulator. Scientific Reports, 2014, 4(1): 7409

    Google Scholar 

  91. 91.

    Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858

    Google Scholar 

  92. 92.

    Yu S, Wu X, Chen K, Chen B, Guo X, Dai D, Tong L, Liu W, Ron Shen Y. All-optical graphene modulator based on optical Kerr phase shift. Optica, 2016, 3(5): 541–544

    Google Scholar 

  93. 93.

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810

    Google Scholar 

  94. 94.

    Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694

    Google Scholar 

  95. 95.

    Marini A, Cox J D, García De Abajo F J. Theory of graphene saturable absorption. Physical Review B, 2017, 95(12): 125408

    Google Scholar 

  96. 96.

    Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G, Polini M. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications, 2013, 4: 1987

    Google Scholar 

  97. 97.

    Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 2008, 103(6): 064302

    Google Scholar 

  98. 98.

    Tielrooij K J, Piatkowski L, Massicotte M, Woessner A, Ma Q, Lee Y, Myhro K S, Lau C N, Jarillo-Herrero P, van Hulst N F, Koppens F H L. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nature Nanotechnology, 2015, 10(5): 437–443

    Google Scholar 

  99. 99.

    Soavi G, Wang G, Rostami H, Tomadin A, Balci O, Paradisanos I, Pogna E A A, Cerullo G, Lidorikis E, Polini M, Ferrari A C. Hot electrons modulation of third-harmonic generation in graphene. ACS Photonics, 2019, 6(11): 2841–2849

    Google Scholar 

  100. 100.

    Song J C W, Tielrooij K J, Koppens F H L, Levitov L S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Physical Review B, 2013, 87(15): 155429

    Google Scholar 

  101. 101.

    Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116

    Google Scholar 

  102. 102.

    Trushin M, Grupp A, Soavi G, Budweg A, De Fazio D, Sassi U, Lombardo A, Ferrari A C, Belzig W, Leitenstorfer A, Brida D. Ultrafast pseudospin dynamics in graphene. Physical Review B, 2015, 92(16): 165429

    Google Scholar 

  103. 103.

    Song J C, Reizer M Y, Levitov L S. Disorder-assisted electronphonon scattering and cooling pathways in graphene. Physical Review Letters, 2012, 109(10): 106602

    Google Scholar 

  104. 104.

    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959

    Google Scholar 

  105. 105.

    Tomadin A, Hornett S M, Wang H I, Alexeev E M, Candini A, Coletti C, Turchinovich D, Kläui M, Bonn M, Koppens F H L, Hendry E, Polini M, Tielrooij K J. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Science Advances, 2018, 4(5): eaar5313

    Google Scholar 

  106. 106.

    Mikhailov S A. Theory of the strongly nonlinear electrodynamic response of graphene: a hot electron model. Physical Review B, 2019, 100(11): 115416

    Google Scholar 

  107. 107.

    Tian W C, Li W H, Yu W B, Liu X H. A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines, 2017, 8(5): 163

    Google Scholar 

  108. 108.

    George P A, Strait J, Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Letters, 2008, 8(12): 4248–4251

    Google Scholar 

  109. 109.

    Majumdar A, Kim J, Vuckovic J, Wang F. Electrical control of silicon photonic crystal cavity by graphene. Nano Letters, 2013, 13 (2): 515–518

    Google Scholar 

  110. 110.

    Fan K, Suen J, Wu X, Padilla W J. Graphene metamaterial modulator for free-space thermal radiation. Optics Express, 2016, 24(22): 25189–25201

    Google Scholar 

  111. 111.

    Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T. Hybrid graphene metasurfaces for highspeed mid-infrared light modulation and single-pixel imaging. Light, Science & Applications, 2018, 7(1): 51

    Google Scholar 

  112. 112.

    Gan X, Mak K F, Gao Y, You Y, Hatami F, Hone J, Heinz T F, Englund D. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Letters, 2012, 12(11): 5626–5631

    Google Scholar 

  113. 113.

    Shi Z, Gan L, Xiao T, Guo H, Li Z. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics, 2015, 2(11): 1513–1518

    Google Scholar 

  114. 114.

    Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901

    Google Scholar 

  115. 115.

    Chen J H, Zheng B C, Shao G H, Ge S J, Xu F, Lu Y Q. An all-optical modulator based on a stereo graphene-microfiber structure. Light, Science & Applications, 2015, 4(12): e360

    Google Scholar 

  116. 116.

    Yu S L, Meng C, Chen B, Wang H, Wu X, Liu W, Zhang S, Liu Y, Su Y, Tong L. Graphene decorated microfiber for ultrafast optical modulation. Optics Express, 2015, 23(8): 10764–10770

    Google Scholar 

  117. 117.

    Meng C, Yu S L, Wang H Q, Cao Y, Tong L M, Liu W T, Shen Y R. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light, Science & Applications, 2015, 4 (11): e348

    Google Scholar 

  118. 118.

    Zhang H, Healy N, Shen L, Huang C C, Hewak D W, Peacock A C. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss. Scientific Reports, 2016, 6(1): 23512

    Google Scholar 

  119. 119.

    Debnath P C, Uddin S, Song Y W. Ultrafast all-optical switching incorporating in situ graphene grown along an optical fiber by the evanescent field of a laser. ACS Photonics, 2018, 5(2): 445–455

    Google Scholar 

  120. 120.

    Romagnoli M, Sorianello V, Midrio M, Koppens F H L, Huyghebaert C, Neumaier D, Galli P, Templ W, D’errico A, Ferrari A C. Graphene-based integrated photonics for next-generation datacom and telecom. Nature Reviews Materials, 2018, 3(10): 392–414

    Google Scholar 

  121. 121.

    Yu L, Zheng J, Xu Y, Dai D, He S. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386–11393

    Google Scholar 

  122. 122.

    Sun F, Xia L, Nie C, Shen J, Zou Y, Cheng G, Wu H, Zhang Y, Wei D, Yin S, Du C. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology, 2018, 29(13): 135201

    Google Scholar 

  123. 123.

    Sun F, Xia L, Nie C, Qiu C, Tang L, Shen J, Sun T, Yu L, Wu P, Yin S, Yan S, Du C. An all-optical modulator based on a grapheneplasmonic slot waveguide at 1550 nm. Applied Physics Express, 2019, 12(4): 042009

    Google Scholar 

  124. 124.

    Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z, Wang Y. CMOS-compatible all-optical modulator based on the saturable absorption ofgraphene. Photonics Research, 2020, 8(4): 468

    Google Scholar 

  125. 125.

    Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 2016, 3 (9): 999–1005

    Google Scholar 

  126. 126.

    Ruzicka B A, Wang S, Werake L K, Weintrub B, Loh K P, Zhao H. Hot carrier diffusion in graphene. Physical Review B, 2010, 82 (19): 195414

    Google Scholar 

  127. 127.

    Zhu J, Cheng X, Liu Y, Wang R, Jiang M, Li D, Lu B, Ren Z. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber. Photonics Research, 2019, 7(1): 8–13

    Google Scholar 

  128. 128.

    Wang Y, Zhang F, Tang X, Chen X, Chen Y, Huang W, Liang Z, Wu L, Ge Y, Song Y, Liu J, Zhang D, Li J, Zhang H. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser & Photonics Reviews, 2018, 12(6): 1800016

    Google Scholar 

  129. 129.

    Koppens F H, Chang D E, García de Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions. Nano Letters, 2011, 11(8): 3370–3377

    Google Scholar 

  130. 130.

    Ooi K J A, Tan D T H. Nonlinear graphene plasmonics. Proceedings of the Royal Society of London, Series A, 2017, 473(2206): 20170433

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91950204 and 61975179), the National Key Research and Development Program of China (No. 2019YFB2203002), and Shanghai Sailing Program (No. 19YF1435400).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongtao Lin.

Additional information

Chuyu Zhong is a post-doctor at College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China. He received his B.S. degree in Theoretical Physics from Wuhan University, Wuhan, China, in 2013, and Ph.D. degree from Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, China, in 2018. Dr. Zhong had made his contribution to the research of vertical-cavity surface-emitting laser (VCSEL). His current research interests are focused on silicon photonics and chalcogenide integrated nanophotonics, and their applications include mid-infrared modulation and graphene-based optoelectronics.

Junying Li is a postdoctoral fellow at College of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China. She received her B.S. degree in Optoelectronic Engineering in 2013, and Ph.D. degree in Optical Engineering in 2018, both from Chongqing University, Chongqing, China. Dr. Li’s research focuses on chalcogenide phase change materials, chalcogenide integrated photonics, and surface-enhanced Raman scattering. She has authored and co-authored more than 20 journal publications, including publications in Nature Communication, Carbon, etc.

Hongtao Lin is an Assistant Professor at College of Information Science and Electronic Engineering, Zhejiang University, Hang-zhou, China. He received his B.S. degree in Materials Physics from University of Science and Technology of China, Hefei, China, in 2010, and Ph.D. degree in Materials Science from University of Delaware, Newark, DE, USA, in 2015. His research interests are focused on chalcogenide integrated nanophotonics and their applications for mid-infrared sensing/communication, flexible and wearable photonics, two-dimensional materials optoelectronics.

Dr. Lin has authored and co-authored more than 40 referred journal publications and more than 30 conference proceedings, including publications in Nature Photonics, Nature Communication, Optica, etc. His works had been selected to be included in “Optics in 2014” and “Optics in 2018” by OSA’s Optic & Photonics News.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Li, J. & Lin, H. Graphene-based all-optical modulators. Front. Optoelectron. (2020). https://doi.org/10.1007/s12200-020-1020-4

Download citation

Keywords

  • graphene
  • saturable absorption
  • low power consumption
  • all-optical modulation