Recent advances, challenges, and opportunities of inorganic nanoscintillators

Abstract

This review article highlights the exploration of inorganic nanoscintillators for various scientific and technological applications in the fields of radiation detection, bioimaging, and medical theranostics. Various aspects of nanoscintillators pertaining to their fundamental principles, mechanism, structure, applications are briefly discussed. The mechanisms of inorganic nanoscintillators are explained based on the fundamental principles, instrumentation involved, and associated physical and chemical phenomena, etc. Subsequently, the promise of nanoscintillators over the existing single-crystal scintillators and other types of scintillators is presented, enabling their development for multifunctional applications. The processes governing the scintillation mechanisms in nanodomains, such as surface, structure, quantum, and dielectric confinement, are explained to reveal the underlying nanoscale scintillation phenomena. Additionally, suitable examples are provided to explain these processes based on the published data. Furthermore, we attempt to explain the different types of inorganic nanoscintillators in terms of the powder nanoparticles, thin films, nanoceramics, and glasses to ensure that the effect of nanoscience in different nanoscintillator domains can be appreciated. The limitations of nanoscintillators are also highlighted in this review article. The advantages of nanostructured scintillators, including their property-driven applications, are also explained. This review article presents the considerable application potential of nanostructured scintillators with respect to important aspects as well as their physical and application significance in a concise manner.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Kamkaew A, Chen F, Zhan Y, Majewski R L, Cai W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 2016, 10(4): 3918–3935

    Article  Google Scholar 

  2. 2.

    Birowosuto M D, Cortecchia D, Drozdowski W, Brylew K, Lachmanski W, Bruno A, Soci C. X-ray scintillation in lead halide perovskite crystals. Scientific Reports, 2016, 6(1): 37254

    Article  Google Scholar 

  3. 3.

    Tsubota Y, Kaneko J H, Higuchi M, Nishiyama S, Ishibashi H. High-temperature scintillation properties of orthorhombic Gd2Si2O7 aiming at well logging. Applied Physics Express, 2015, 8(6): 062602

    Article  Google Scholar 

  4. 4.

    Lecoq P. Development of new scintillators for medical applications. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 130–139

    Google Scholar 

  5. 5.

    Jacobsohn L G, Sprinkle K B, Roberts S A, Kucera C J, James T L, Yukihara E G, DeVol T A, Ballato J. Fluoride nanoscintillators. Journal of Nanomaterials, 2011, 2011: 1

    Article  Google Scholar 

  6. 6.

    Rodnyi P A. Physical Processes in Inorganic Scintillators. Boca Raton: CRC Press, 1997

    Google Scholar 

  7. 7.

    Lee S K, Kang S Y, Jang D Y, Lee C H, Kang SM. Comparison of new simple methods in fabricating ZnS (Ag) scintillators for detecting alpha particles. Nuclear science and technology, 2011, 1: 194–197

    Article  Google Scholar 

  8. 8.

    Knoll G F. Radiation Detection and Measurement. New York: John Wiley & Sons, 2010

    Google Scholar 

  9. 9.

    Bizarri G. Scintillation mechanisms of inorganic materials: from crystal characteristics to scintillation properties. Journal of Crystal Growth, 2010, 312(8): 1213–1215

    Article  Google Scholar 

  10. 10.

    Shockley W. Problems related top-n junctions in silicon. Czechoslovak Journal of Physics, 1961, 11(2): 81–121

    Article  Google Scholar 

  11. 11.

    Robbins D. On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. Journal of the Electrochemical Society, 1980, 127(12): 2694–2702

    Article  Google Scholar 

  12. 12.

    Blasse G. Search for new inorganic scintillators. IEEE Transactions on Nuclear Science, 1991, 38(1): 30–31

    Article  Google Scholar 

  13. 13.

    Blasse G. Scintillator materials. Chemistry of Materials, 1994, 6 (9): 1465–1475

    Article  Google Scholar 

  14. 14.

    Blasse G. Luminescent materials: is there still news? Journal of Alloys and Compounds, 1995, 225(1-2): 529–533

    Article  Google Scholar 

  15. 15.

    Derenzo S, Weber M, Bourret-Courchesne E, Klintenberg M. The quest for the ideal inorganic scintillator. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1-2): 111–117

    Google Scholar 

  16. 16.

    Derenzo S E, Moses W, Cahoon J, Perera R, Litton J. Prospects for new inorganic scintillators. IEEE Transactions on Nuclear Science, 1990, 37(2): 203–208

    Article  Google Scholar 

  17. 17.

    Ishii M, Kobayashi M. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245–311

    Article  Google Scholar 

  18. 18.

    Milbrath B D, Peurrung A J, Bliss M, Weber W J. Radiation detector materials: an overview. Journal of Materials Research, 2008, 23(10): 2561–2581

    Article  Google Scholar 

  19. 19.

    Liu C, Li Z, Hajagos T J, Kishpaugh D, Chen D Y, Pei Q. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11(6): 6422–6430

    Article  Google Scholar 

  20. 20.

    Heath R, Hofstadter R, Hughes E. Inorganic scintillators: a review of techniques and applications. Nuclear Instruments and Methods, 1979, 162(1-3): 431–476

    Article  Google Scholar 

  21. 21.

    Weber M J. Inorganic scintillators: today and tomorrow. Journal of Luminescence, 2002, 100(1-4): 35–45

    Article  Google Scholar 

  22. 22.

    Gupta T K. Characterization of Radiation Detectors (Scintillators) Used in Nuclear Medicine, Radiation, Ionization, and Detection in Nuclear Medicine. Berlin: Springer, 2013, 367–449

    Google Scholar 

  23. 23.

    SyS C. Inorganic Scintillator Detectors. Available online via Caensys website

  24. 24.

    Lecoq P, Gektin A, Korzhik M. Influence of Crystal Structure Defects on Scintillation Properties. In: Inorganic Scintillators for Detector Systems. Particle Acceleration and Detection. Berlin: Springer, 2017, 197–252

    Google Scholar 

  25. 25.

    Nikl M, Laguta V, Vedda A. Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi (B), 2008, 245: 1701–1722

    Article  Google Scholar 

  26. 26.

    Lisitsyn V, Lisitsyna L, Polisadova E. Complex defects in crystal scintillation materials and phosphors. IOP Conference Series. Materials Science and Engineering, 2017, 168: 012086

    Google Scholar 

  27. 27.

    Kuklja M M. Defects in yttrium aluminium perovskite and garnet crystals: atomistic study. Journal of Physics Condensed Matter, 2000, 12(13): 2953–2967

    Article  Google Scholar 

  28. 28.

    Nikolopoulos D, Valais I, Michail C, Bakas A, Fountzoula C, Cantzos D, Bhattacharyya D, Sianoudis I, Fountos G, Yannakopoulos P, Panayiotakis G, Kandarakis I. Radioluminescence properties of the CdSe/ZnS quantum dot nanocrystals with analysis of long-memory trends. Radiation Measurements, 2016, 92: 19–31

    Article  Google Scholar 

  29. 29.

    Osakada Y, Pratx G, Sun C, Sakamoto M, Ahmad M, Volotskova O, Ong Q, Teranishi T, Harada Y, Xing L, Cui B. Hard X-rayinduced optical luminescence via biomolecule-directed metal clusters. Chemical Communications, 2014, 50(27): 3549–3551

    Article  Google Scholar 

  30. 30.

    Osakada Y, Pratx G, Hanson L, Solomon P E, Xing L, Cui B. Xray excitable luminescent polymer dots doped with an iridium(III) complex. Chemical Communications, 2013, 49(39): 4319–4321

    Article  Google Scholar 

  31. 31.

    Wang C, Volotskova O, Lu K, Ahmad M, Sun C, Xing L, Lin W. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation. Journal of the American Chemical Society, 2014, 136(17): 6171–6174

    Article  Google Scholar 

  32. 32.

    Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39

    Article  Google Scholar 

  33. 33.

    Gupta S K, Zuniga J P, Abdou M, Mao Y. Thermal annealing effects on La2Hf2O7:Eu3+ nanoparticles: a curious case study of structural evolution and site-specific photo- and radio-luminescence. Inorganic Chemistry Frontiers, 2018, 5(10): 2508–2521

    Article  Google Scholar 

  34. 34.

    Gupta S K, Zuniga J P, Ghosh P S, Abdou M, Mao Y. Correlating structure and luminescence properties of undoped and Eu3+-doped La2Hf2O7 nanoparticles prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 2018, 57(18): 11815–11830

    Article  Google Scholar 

  35. 35.

    Pokhrel M, Gupta S K, Wahid K, Mao Y. Pyrochlore rare-earth hafnate RE2Hf2O7 (RE = La and Pr) nanoparticles stabilized by molten-salt synthesis at low temperature. Inorganic Chemistry, 2019, 58(2): 1241–1251

    Article  Google Scholar 

  36. 36.

    Zuniga J P, Gupta S K, Pokhrel M, Mao Y. Exploring the optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New Journal of Chemistry, 2018, 42(12): 9381–9392

    Article  Google Scholar 

  37. 37.

    Zuniga J P, Gupta S K, Abdou M, Mao Y. Effect of molten salt synthesis processing duration on the photo- and radioluminescence of UV-, visible-, and X-ray-excitable La2Hf2O7:Eu3+ nanoparticles. ACS Omega, 2018, 3(7): 7757–7770

    Article  Google Scholar 

  38. 38.

    Pokhrel M, Alcoutlabi M, Mao Y. Optical and X-ray induced luminescence from Eu3+ doped La2Zr2O7 nanoparticles. Journal of Alloys and Compounds, 2017, 693: 719–729

    Article  Google Scholar 

  39. 39.

    Pokhrel M, Burger A, Groza M, Mao Y. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Optical Materials, 2017, 68: 35–41

    Article  Google Scholar 

  40. 40.

    Wahid K, Pokhrel M, Mao Y. Structural, photoluminescence and radioluminescence properties of Eu3+ doped La2Hf2O7 nanoparticles. Journal of Solid State Chemistry, 2017, 245: 89–97

    Article  Google Scholar 

  41. 41.

    Gupta S K, Abdou M, Ghosh P S, Zuniga J P, Mao Y. Thermally induced disorder-order phase transition of Gd2Hf2O7:Eu3+ nanoparticles and its implication on photo- and radioluminescence. ACS Omega, 2019, 4(2): 2779–2791

    Article  Google Scholar 

  42. 42.

    Gupta S K, Abdou M, Zuniga J P, Ghosh P S, Molina E, Xu B, Chipara M, Mao Y. Roles of oxygen vacancies and pH induced size changes on photo- and radioluminescence of undoped and Eu3+-doped La2Zr2O7 nanoparticles. Journal of Luminescence, 2019, 209: 302–315

    Article  Google Scholar 

  43. 43.

    Abdou M, Gupta S K, Zuniga J P, Mao Y. On structure and phase transformation of uranium doped La2Hf2O7 nanoparticles as an efficient nuclear waste host. Materials Chemistry Frontiers, 2018, 2 (12): 2201–2211

    Article  Google Scholar 

  44. 44.

    Gupta S K, Abdou M, Zuniga J P, Puretzky A A, Mao Y. Samarium-activated La2Hf2O7 nanoparticles as multifunctional phosphors. ACS Omega, 2019, 4(19): 17956–17966

    Article  Google Scholar 

  45. 45.

    Gupta S K, Zuniga J P, Abdou M, Ghosh P S, Mao Y. Optical properties of undoped, Eu3+ doped and Li+ co-doped Y2Hf2O7 nanoparticles and polymer nanocomposite films. Inorganic Chemistry Frontiers, 2020, 7(2): 505–518

    Article  Google Scholar 

  46. 46.

    Zuniga J P, Gupta S K, Abdou M, De Santiago H A, Puretzky A A, Thomas M P, Guiton B S, Liu J, Mao Y. Size, structure, and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis. Journal of Materials Science, 2019, 54(19): 12411–12423

    Article  Google Scholar 

  47. 47.

    Abdou M, Gupta S K, Zuniga J P, Mao Y. Insight into the effect of A-site cations on structural and optical properties of RE2Hf2O7:U nanoparticles. Journal of Luminescence, 2019, 210: 425–434

    Article  Google Scholar 

  48. 48.

    Gupta S K, Penilla Garcia M A, Zuniga J P, Abdou M, Mao Y. Visible and ultraviolet upconversion and near infrared downconversion luminescence from lanthanide doped La2Zr2O7 nanoparticles. Journal of Luminescence, 2019, 214: 116591

    Article  Google Scholar 

  49. 49.

    Gupta S K, Zuniga J P, Abdou M, Thomas M P, De Alwis Goonatilleke M, Guiton B S, Mao Y. Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators. Chemical Engineering Journal, 2020, 379: 122314

    Article  Google Scholar 

  50. 50.

    Penilla Garcia M A, Gupta S K, Mao Y. Effects of molten-salt processing parameters on the structural and optical properties of preformed La2Zr2O7:Eu3+ nanoparticles. Ceramics International, 2020, 46(2): 1352–1361

    Article  Google Scholar 

  51. 51.

    Jagtap S, Chopade P, Tadepalli S, Bhalerao A, Gosavi S. A review on the progress of ZnSe as inorganic scintillator. Opto-Electronics Review, 2019, 27(1): 90–103

    Article  Google Scholar 

  52. 52.

    Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov A A, Guan X, Han S, Liang L, Yi Z, Li J, Xie X, Wang Y, Li Y, Fan D, Teh D B L, All A H, Mohammed O F, Bakr O M, Wu T, Bettinelli M, Yang H, Huang W, Liu X. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88–93

    Article  Google Scholar 

  53. 53.

    Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin WJ, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiB6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732

    Article  Google Scholar 

  54. 54.

    Zhang Y, Sun R, Ou X, Fu K, Chen Q, Ding Y, Xu L J, Liu L, Han Y, Malko A V, Liu X, Yang H, Bakr OM, Liu H, Mohammed O F. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano, 2019, 13(2): 2520–2525

    Article  Google Scholar 

  55. 55.

    Fu H. Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells. Solar Energy Materials and Solar Cells, 2019, 193: 107–132

    Article  Google Scholar 

  56. 56.

    Wang X, Zhang T, Lou Y, Zhao Y. All-inorganic lead-free perovskites for optoelectronic applications. Materials Chemistry Frontiers, 2019, 3(3): 365–375

    Article  Google Scholar 

  57. 57.

    Yamamoto S, Kamada K, Yoshikawa A. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. Scientific Reports, 2018, 8(1): 3194

    Article  Google Scholar 

  58. 58.

    Berneking A, Gola A, Ferri A, Finster F, Rucatti D, Paternoster G, Shah N J, Piemonte C, Lerche C. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 44–52

    Google Scholar 

  59. 59.

    Hsu C C, Lin S L, Chang C A. Lanthanide-doped core-shell-shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single X-ray excitation source. ACS Applied Materials & Interfaces, 2018, 10(9): 7859–7870

    Article  Google Scholar 

  60. 60.

    Li X, Xue Z, Jiang M, Li Y, Zeng S, Liu H. Soft X-ray activated NaYF4:Gd/Tb scintillating nanorods for in vivo dual-modal X-ray/ X-ray-induced optical bioimaging. Nanoscale, 2018, 10(1): 342–350

    Article  Google Scholar 

  61. 61.

    Hu C, Zhang L, Zhu R Y, Chen A, Wang Z, Ying L, Yu Z. Ultrafast inorganic scintillators for GHz hard X-Ray imaging. IEEE Transactions on Nuclear Science, 2018, 65(8): 2097–2104

    Article  Google Scholar 

  62. 62.

    Miller S R, Bhandari H B, Bhattacharya P, Brecher C, Crespi J, Couture A, Dinca C, Rommel M, Nagarkar V V. Reduced afterglow codoped CsI:Tl for high energy imaging. IEEE Transactions on Nuclear Science, 2018, 65(8): 2105–2108

    Article  Google Scholar 

  63. 63.

    Blasse G, Grabmaier B. Luminescent Materials. Berlin: Springer Science & Business Media, 2012

    Google Scholar 

  64. 64.

    Grabmaier B, Rossner W, Leppert J. Ceramic scintillators for XRay computed tomography. Physica Status Solidi (A), 1992, 130: K183–K187

    Article  Google Scholar 

  65. 65.

    Greskovich C, Duclos S. Ceramic scintillators. Annual Review of Materials Science, 1997, 27(1): 69–88

    Article  Google Scholar 

  66. 66.

    Buse G, Giuliani A, De Marcillac P, Marnieros S, Nones C, Novati V, Olivieri E, Poda D, Redon T, Sand J B, Veber P, Velázquez M, Zolotarova A S. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 891: 87–91

    Article  Google Scholar 

  67. 67.

    Zhu M, Qi H, Pan M, Hou Q, Jiang B, Jin Y, Han H, Song Z, Zhang H. Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals. Journal of Crystal Growth, 2018, 490: 51–55

    Article  Google Scholar 

  68. 68.

    Khan A, Rooh G, Kim H, Kim S. Ce3+-activated Tl2GdCl5: novel halide scintillator for X-ray and ?-ray detection. Journal of Alloys and Compounds, 2018, 741: 878–882

    Article  Google Scholar 

  69. 69.

    Jung J, Hirata G, Gundiah G, Derenzo S, Wrasidlo W, Kesari S, Makale M, McKittrick J. Identification and development of nanoscintillators for biotechnology applications. Journal of Luminescence, 2014, 154: 569–577

    Article  Google Scholar 

  70. 70.

    Klein J S, Sun C, Pratx G. Radioluminescence in biomedicine: physics, applications, and models. Physics in Medicine and Biology, 2019, 64(4): 04TR01

    Article  Google Scholar 

  71. 71.

    Growing Single Crystals. In: Carter C B, Norton M G, eds. Ceramic Materials: Science and Engineering. New York: Springer, 2007, 507–526

  72. 72.

    Savytskii D, Knorr B, Dierolf V, Jain H. Demonstration of single crystal growth via solid-solid transformation of a glass. Scientific Reports, 2016, 6(1): 23324

    Article  Google Scholar 

  73. 73.

    Kivambe M, Aissa B, Tabet N. Emerging technologies in crystal growth of photovoltaic silicon: progress and challenges. Energy Procedia, 2017, 130: 7–13

    Article  Google Scholar 

  74. 74.

    Zhang C, Lin J. Defect-related luminescent materials: synthesis, emission properties and applications. Chemical Society Reviews, 2012, 41(23): 7938–7961

    Article  Google Scholar 

  75. 75.

    Persyk D E, Schardt M A, Moi T E, Ritter K A, Muehllehner G. Research on pure sodium iodide as a practical scintillator. IEEE Transactions on Nuclear Science, 1980, 27(1): 167–171

    Article  Google Scholar 

  76. 76.

    Andryushchenko L, Grinev B, Udovichenko L, Litichevsky A. Improved NaI(Tl) scintillation detectors. Instruments and Experimental Techniques, 1997, 40: 59–63

    Google Scholar 

  77. 77.

    Verger L, Ouvrier-Buffet P, Mathy F, Montemont G, Picone M, Rustique J, Riffard C. Performance of a new CdZnTe portable spectrometric system for high energy applications. IEEE Transactions on Nuclear Science, 2005, 52(5): 1733–1738

    Article  Google Scholar 

  78. 78.

    Berninger W. Monolithic gamma detector arrays and position sensitive detectors in high purity germanium. IEEE Transactions on Nuclear Science, 1974, 21(1): 374–378

    Article  Google Scholar 

  79. 79.

    Milbrath B D, Peurrung A J, Bliss M, Weber W J. Radiation detector materials: an overview. Journal of Materials Research, 2008, 23(10): 2561–2581

    Article  Google Scholar 

  80. 80.

    Nikl M. Scintillation detectors for X-rays. Measurement Science & Technology, 2006, 17(4): R37–R54

    Article  Google Scholar 

  81. 81.

    Greskovich C, Duclos S. Ceramic scinitillators. Annual Review of Materials Science, 1997, 27(1): 69–88

    Article  Google Scholar 

  82. 82.

    Jung J Y, Hirata G A, Gundiah G, Derenzo S, Wrasidlo W, Kesari S, Makale M T, McKittrick J. Identification and development of nanoscintillators for biotechnology applications. Journal of Luminescence, 2014, 154: 569–577

    Article  Google Scholar 

  83. 83.

    Brown S S, Rondinone A J, Dai S. Applications of Nanoparticles in Scintillation Detectors. Washington: ACS Publications, 2007

    Google Scholar 

  84. 84.

    Liu C, Li Z, Hajagos T J, Kishpaugh D, Chen D Y, Pei Q. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11(6): 6422–6430

    Article  Google Scholar 

  85. 85.

    Yildirim S, Asal E C K, Ertekin K, Celik E. Luminescent properties of scintillator nanophosphors produced by flame spray pyrolysis. Journal of Luminescence, 2017, 187: 304–312

    Article  Google Scholar 

  86. 86.

    Hernandez-Sanchez B A, Boyle T J, Villone J, Yang P, Kinnan M, Hoppe S, Thoma S, Hattar K M, Doty F P. Size effects on the properties of high Z scintillator materials. In: Proceedings of Penetrating Radiation Systems and Applications XIII, International Society for Optics and Photonics, 2012, 85090G

    Google Scholar 

  87. 87.

    Stouwdam JW, van Veggel F C. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir, 2004, 20(26): 11763–11771

    Article  Google Scholar 

  88. 88.

    Kömpe K, Lehmann O, Haase M. Spectroscopic distinction of surface and volume ions in cerium (III)-and terbium (III)- containing core and core/shell nanoparticles. Chemistry of Materials, 2006, 18(18): 4442–4446

    Article  Google Scholar 

  89. 89.

    Cooke D, Lee J K, Bennett B, Groves J, Jacobsohn L, McKigney E, Muenchausen R, Nastasi M, Sickafus K, Tang M, Valdez J A, Kim J Y, Hong K S. Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors. Applied Physics Letters, 2006, 88(10): 103108

    Article  Google Scholar 

  90. 90.

    Muenchausen R, Jacobsohn L, Bennett B, McKigney E, Smith J, Cooke D. A novel method for extracting oscillator strength of select rare-earth ion optical transitions in nanostructured dielectric materials. Solid State Communications, 2006, 139(10): 497–500

    Article  Google Scholar 

  91. 91.

    Kyung Cha B, Jun Lee S, Muralidharan P, Yul Kim J, Kim D K, Cho G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S294–S296

    Google Scholar 

  92. 92.

    Klassen N V, Kedrov V V, Ossipyan Y A, Shmurak S Z, Shmyt Ko I M, Krivko O A, Kudrenko E A, Kurlov V N, Kobelev N P, Kiselev A P, Bozhko S I. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy. IEEE Transactions on Nanobioscience, 2009, 8(1): 20–32

    Article  Google Scholar 

  93. 93.

    Scaffidi J P, Gregas M K, Lauly B, Zhang Y, Vo-Dinh T. Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 2011, 5(6): 4679–4687

    Article  Google Scholar 

  94. 94.

    Roy I, Ohulchanskyy T Y, Pudavar H E, Bergey E J, Oseroff A R, Morgan J, Dougherty T J, Prasad P N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Journal of the American Chemical Society, 2003, 125(26): 7860–7865

    Article  Google Scholar 

  95. 95.

    Guss P, Guise R, Yuan D, Mukhopadhyay S, O'Brien R, Lowe D, Kang Z, Menkara H, Nagarkar V V. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013, 113(6): 064303

    Article  Google Scholar 

  96. 96.

    Walters R J, Kalkman J, Polman A, Atwater H A, de Dood M J A. Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Physical Review B, 2006, 73(13): 132302

    Article  Google Scholar 

  97. 97.

    Balazs A C, Emrick T, Russell T P. Nanoparticle polymer composites: where two small worlds meet. Science, 2006, 314 (5802): 1107–1110

    Article  Google Scholar 

  98. 98.

    Létant S E, Wang T F. Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Letters, 2006, 6(12): 2877–2880

    Article  Google Scholar 

  99. 99.

    Liu C. High-Z nanoparticle/polymer nanocomposites for gammaray scintillation detectors. Dissertation for the Doctoral Degree. Los Angeles: University of California, 2017

    Google Scholar 

  100. 100.

    Novak B M. Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Advanced Materials, 1993, 5(6): 422–433

    Article  Google Scholar 

  101. 101.

    Dujardin C, Amans D, Belsky A, Chaput F, Ledoux G, Pillonnet A. Luminescence and scintillation properties at the nanoscale. IEEE Transactions on Nuclear Science, 2010, 57(3): 1348–1354

    Article  Google Scholar 

  102. 102.

    Braverman J B, Fabris L, Newby J, Hornback D, Ziock K P. Threedimensional event localization in bulk scintillator crystals using optical coded apertures. In: Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014, 1–8

    Google Scholar 

  103. 103.

    Braverman J B. Event localization in bulk scintillator crystals using optical coded apertures. Dissertation for the Doctoral Degree. Knoxville: University of Tennessee, 2015

    Google Scholar 

  104. 104.

    Melcher C. Perspectives on the future development of new scintillators. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1-2): 6–14

    Google Scholar 

  105. 105.

    Taheri A, Saramad S, Setayeshi S. Geant4 simulation of zinc oxide nanowires in anodized aluminum oxide template as a low energy X-ray scintillator detector. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 701: 30–36

    Google Scholar 

  106. 106.

    Taheri A, Saramad S, Ghalenoei S, Setayeshi S. Taheri-Saramad Xray detector (TSXD): a novel high spatial resolution X-ray imager based on ZnO nano scintillator wires in polycarbonate membrane. Review of Scientific Instruments, 2014, 85(1): 013112

    Article  Google Scholar 

  107. 107.

    Ashworth C. Super scintillators. Nature Reviews. Materials, 2018, 3(10): 355

    Article  Google Scholar 

  108. 108.

    Alves L A, Ferreira L B, Pacheco P F, Mendivelso E A C, Teixeira P C N, Faria R X. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators. Oncotarget, 2018, 9(38): 25342–25354

    Article  Google Scholar 

  109. 109.

    Winterer M, Nitsche R, Hahn H. Local structure in nanocrystalline ZrO2 and Y2O3 by EXAFS. Nanostructured Materials, 1997, 9(1–8): 397–400

    Article  Google Scholar 

  110. 110.

    Nigam S, Sudarsan V, Majumder C, Vatsa R. Structural differences existing in bulk and nanoparticles of Y2Sn2O7: investigated by experimental and theoretical methods. Journal of Solid State Chemistry, 2013, 200: 202–208

    Article  Google Scholar 

  111. 111.

    Cutler P A. Synthesis and scintillation of single crystal and polycrystalline rare-earth-activated lutetium aluminum garnet. Dissertation for the Master Degree. Knoxville: University of Tennessee, 2010

    Google Scholar 

  112. 112.

    Ryskin N N, Dorenbos P, Eijk C W E, Batygov S K. Scintillation properties of Lu3Al5-xScxO12 crystals. Journal of Physics Condensed Matter, 1994, 6(47): 10423–10434

    Article  Google Scholar 

  113. 113.

    Zhuravleva M, Yang K, Spurrier-Koschan M, Szupryczynski P, Yoshikawa A, Melcher C. Crystal growth and characterization of LuAG:Ce:Tb scintillator. Journal of Crystal Growth, 2010, 312(8): 1244–1248

    Article  Google Scholar 

  114. 114.

    Edgar A, Bartle M, Varoy C, Raymond S, Williams G. Structure and scintillation properties of cerium-doped barium chloride ceramics: effects of cation and anion substitution. IEEE Transactions on Nuclear Science, 2010, 57(3): 1218–1222

    Article  Google Scholar 

  115. 115.

    Peng X, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society, 1997, 119(30): 7019–7029

    Article  Google Scholar 

  116. 116.

    Ledoux G, Gong J, Huisken F. Effect of passivation and aging on the photoluminescence of silicon nanocrystals. Applied Physics Letters, 2001, 79(24): 4028–4030

    Article  Google Scholar 

  117. 117.

    Huignard A, Buissette V, Franville A C, Gacoin T, Boilot J P. Emission processes in YVO4:Eu nanoparticles. Journal of Physical Chemistry B, 2003, 107(28): 6754–6759

    Article  Google Scholar 

  118. 118.

    Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angewandte Chemie, 2010, 49(41): 7456–7460

    Article  Google Scholar 

  119. 119.

    Han J, Hirata G, Talbot J, McKittrick J. Luminescence enhancement of Y2O3:Eu3+ and Y2SiO5:Ce3+,Tb3+ core particles with SiO2 shells. Materials Science and Engineering B, 2011, 176(5): 436–441

    Article  Google Scholar 

  120. 120.

    Li G Z, Yu M, Wang Z L, Lin J, Wang R S, Fang J. Sol–gel fabrication and photoluminescence properties of SiO2@Gd2O3: Eu3+ core-shell particles. Journal of Nanoscience and Nanotechnology, 2006, 6(5): 1416–1422

    Article  Google Scholar 

  121. 121.

    Bao A, Lai H, Yang Y, Liu Z, Tao C, Yang H. Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles. Journal of Nanoparticle Research, 2010, 12(2): 635–643

    Article  Google Scholar 

  122. 122.

    Yu M, Wang H, Lin C, Li G, Lin J. Sol–gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/ Tb3+ particles with a core–shell structure. Nanotechnology, 2006, 17(13): 3245–3252

    Article  Google Scholar 

  123. 123.

    Osseni S A, Lechevallier S, Verelst M, Dujardin C, Dexpert-Ghys J, Neumeyer D, Leclercq M, Baaziz H, Cussac D, Santran V, Mauricot R. New nanoplatform based on Gd2O2S:Eu3+ core: synthesis, characterization and use for in vitro bio-labelling. Journal of Materials Chemistry, 2011, 21(45): 18365–18372

    Article  Google Scholar 

  124. 124.

    Ledoux G, Mercier B, Louis C, Dujardin C, Tillement O, Perriat P. Synthesis and optical characterization of Gd2O3:Eu3+ nanocrystals: surface states and VUV excitation. Radiation Measurements, 2004, 38(4-6): 763–766

    Article  Google Scholar 

  125. 125.

    Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B, 2001, 105(42): 10197–10202

    Article  Google Scholar 

  126. 126.

    Pokhrel M, Burger A, Groza M, Mao Y. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell. Optical Materials, 2017, 68: 35–41

    Article  Google Scholar 

  127. 127.

    Holloway P H, Davidson M, Jacobsohn L G. Strategy for enhanced light output from luminescent nanoparticles. Technical report. Gainesville: Florida University, 2013

    Google Scholar 

  128. 128.

    Jacobsohn L, Kucera C, Sprinkle K, Roberts S, Yukihara E, DeVol T, Ballato J. Scintillation of nanoparticles: case study of rare earth doped fluorides. Nuclear Science Symposium Conference Record (NSS/MIC), IEEE, 2010, 1600–1602

    Google Scholar 

  129. 129.

    Gupta S K, Sudarshan K, Ghosh P, Sanyal K, Srivastava A, Arya A, Pujari P, Kadam R. Luminescence of undoped and Eu3+ doped nanocrystalline SrWO4 scheelite: time resolved fluorescence complimented by DFT and positron annihilation spectroscopic studies. RSC Advances, 2016, 6(5): 3792–3805

    Article  Google Scholar 

  130. 130.

    Gupta S K, Sudarshan K, Ghosh P, Srivastava A, Bevara S, Pujari P, Kadam R. Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: an investigation through spectroscopic and DFT calculations. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(22): 4988–5000

    Article  Google Scholar 

  131. 131.

    Gupta S K, Sudarshan K, Srivastava A, Kadam R. Visible light emission from bulk and nano SrWO4: possible role of defects in photoluminescence. Journal of Luminescence, 2017, 192: 1220–1226

    Article  Google Scholar 

  132. 132.

    Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chemistry of Materials, 2003, 15(14): 2737–2743

    Article  Google Scholar 

  133. 133.

    Yang L, Li L, Zhao M, Li G. Size-induced variations in bulk/ surface structures and their impact on photoluminescence properties of GdVO4:Eu3+ nanoparticles. Physical Chemistry Chemical Physics, 2012, 14(28): 9956–9965

    Article  Google Scholar 

  134. 134.

    Jacobsohn L, Sprinkle K, Kucera C, James T, Roberts S, Qian H, Yukihara E, DeVol T, Ballato J. Synthesis, luminescence and scintillation of rare earth doped lanthanum fluoride nanoparticles. Optical Materials, 2010, 33(2): 136–140

    Article  Google Scholar 

  135. 135.

    Klassen N, Kedrov V, Kurlov V, Ossipyan Y A, Shmurak S, Shmyt’ko I, Strukova G, Kobelev N, Kudrenko E, Krivko O, Kiselev A P, Bazhenov A V, Fursova T N. Advantages and problems of nanocrystalline scintillators. IEEE Transactions on Nuclear Science, 2008, 55(3): 1536–1541

    Article  Google Scholar 

  136. 136.

    Cha B K, Lee S J, Muralidharan P, Kim J Y, Kim D K, Cho G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 633: S294–S296

    Google Scholar 

  137. 137.

    Hiyama F, Noguchi T, Koshimizu M, Kishimoto S, Haruki R, Nishikido F, Yanagida T, Fujimoto Y, Aida T, Takami S, Adschiri T, Asai K. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid. Japanese Journal of Applied Physics, 2018, 57(1): 012601

    Article  Google Scholar 

  138. 138.

    Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432(7014): 197–200

    Article  Google Scholar 

  139. 139.

    Klassen N, Shmyt'ko I, Strukova G, Kedrov V, Kobelev N, Kudrenko E, Kiseliov A, Prokopiuk N. Improvement of scintillation parameters in complex oxides by formation of nanocrystalline structures. In: Proceedings of 8th International SCINT Conference, 2005, 228–231

    Google Scholar 

  140. 140.

    Wilkinson J, Ucer K, Williams R. The oscillator strength of extended exciton states and possibility for very fast scintillators. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1-2): 66–70

    Google Scholar 

  141. 141.

    Elliot R J, Loudon R. Theory of the absorption edge in semiconductors in a high magnetic field. Journal of Physics and Chemistry of Solids, 1960, 15: 196–207

    MathSciNet  Article  Google Scholar 

  142. 142.

    Murray C, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715

    Article  Google Scholar 

  143. 143.

    Milliron D J, Hughes S M, Cui Y, Manna L, Li J, Wang L W, Alivisatos A P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430(6996): 190–195

    Article  Google Scholar 

  144. 144.

    Costa-Fernández J M, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing. Trends in Analytical Chemistry, 2006, 25(3): 207–218

    Article  Google Scholar 

  145. 145.

    Henini M, Bugajski M. Advances in self-assembled semiconductor quantum dot lasers. Microelectronics Journal, 2005, 36(11): 950–956

    Article  Google Scholar 

  146. 146.

    Létant S E, Wang T F. Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Letters, 2006, 6(12): 2877–2880

    Article  Google Scholar 

  147. 147.

    Shibuya K, Koshimizu M, Murakami H, Muroya Y, Katsumura Y, Asai K. Development of ultra-fast semiconducting scintillators using quantum confinement effect. Japanese Journal of Applied Physics, 2004, 43(10B): L1333–L1336

    Article  Google Scholar 

  148. 148.

    Liu B, Wu Q, Zhu Z, Cheng C, Gu M, Xu J, Chen H, Liu J, Chen L, Zhang Z, Ouyang X. Directional emission of quantum dot scintillators controlled by photonic crystals. Applied Physics Letters, 2017, 111(8): 081904

    Article  Google Scholar 

  149. 149.

    Blasse G, Grabmaier B. Energy Transfer, Luminescent Materials. Berlin: Springer, 1994, 91–107

    Google Scholar 

  150. 150.

    Wuister S F, de Mello Donega C, Meijerink A. Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. Journal of Chemical Physics, 2004, 121(9): 4310–4315

    Article  Google Scholar 

  151. 151.

    Lamouche G, Lavallard P, Gacoin T. Optical properties of dye molecules as a function of the surrounding dielectric medium. Physical Review A, 1999, 59(6): 4668–4674

    Article  Google Scholar 

  152. 152.

    Meltzer R, Feofilov S, Tissue B, Yuan H. Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium. Physical Review B, 1999, 60(20): R14012–R14015

    Article  Google Scholar 

  153. 153.

    Dolgaleva K, Boyd R W, Milonni P W. Influence of local-field effects on the radiative lifetime of liquid suspensions of Nd:YAG nanoparticles. Journal of the Optical Society of America B, Optical Physics, 2007, 24(3): 516–521

    Article  Google Scholar 

  154. 154.

    Chon B, Lim S J, Kim W, Seo J, Kang H, Joo T, Hwang J, Shin S K. Shell and ligand-dependent blinking of CdSe-based core/shell nanocrystals. Physical Chemistry Chemical Physics, 2010, 12(32): 9312–9319

    Article  Google Scholar 

  155. 155.

    Li J G, Sakka Y. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Science and Technology of Advanced Materials, 2015, 16(1): 014902

    Article  Google Scholar 

  156. 156.

    Seeley Z M, Cherepy N J, Payne S A. Expanded phase stability of Gd-based garnet transparent ceramic scintillators. Journal of Materials Research, 2014, 29(19): 2332–2337

    Article  Google Scholar 

  157. 157.

    Nikl M, Kamada K, Babin V, Pejchal J, Pilarova K, Mihokova E, Beitlerova A, Bartosiewicz K, Kurosawa S, Yoshikawa A. Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Crystal Growth & Design, 2014, 14(9): 4827–4833

    Article  Google Scholar 

  158. 158.

    Nikl M, Yoshikawa A, Kamada K, Nejezchleb K, Stanek C R, Mares J A, Blazek K. Development of LuAG-based scintillator crystals: a review. Progress in Crystal Growth and Characterization of Materials, 2013, 59(2): 47–72

    Article  Google Scholar 

  159. 159.

    Eagleman Y, Weber M, Chaudhry A, Derenzo S. Luminescence study of cerium-doped La2Hf2O7: effects due to trivalent and tetravalent cerium and oxygen vacancies. Journal of Luminescence, 2012, 132(11): 2889–2896

    Article  Google Scholar 

  160. 160.

    Gupta S K, Zuniga J P, Ghosh P S, Abdou M, Mao Y. Correlating structure and luminescence properties of undoped and La2Hf2O7: Eu3+NPs prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 2018, 57: 11815–11830

    Article  Google Scholar 

  161. 161.

    Cao J, Chen L, Chen W, Xu D, Sun X, Guo H. Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals. Optical Materials Express, 2016, 6(7): 2201–2206

    Article  Google Scholar 

  162. 162.

    Schwartz K. Atomic Physics Methods in Modern Research. Berlin: Springer, 1997

    Google Scholar 

  163. 163.

    Benitez E, Husk D, Schnatterly S, Tarrio C. A surface recombination model applied to large features in inorganic phosphor efficiency measurements in the soft X-ray region. Journal of Applied Physics, 1991, 70(6): 3256–3260

    Article  Google Scholar 

  164. 164.

    Mikhailik V, Kraus H, Miller G, Mykhaylyk M, Wahl D. Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations. Journal of Applied Physics, 2005, 97(8): 083523

    Article  Google Scholar 

  165. 165.

    Sen S, Tyagi M, Sharma K, Sarkar P S, Sarkar S, Basak C B, Pitale S, Ghosh M, Gadkari S C. Organic-inorganic composite films based on Gd3Ga3Al2O12:Ce scintillator nanoparticles for X-ray imaging applications. ACS Applied Materials & Interfaces, 2017, 9(42): 37310–37320

    Article  Google Scholar 

  166. 166.

    Demkiv T, Halyatkin O, Vistovskyy V, Gektin A, Voloshinovskii A. Luminescent and kinetic properties of the polystyrene composites based on BaF2 nanoparticles. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 810: 1–5

    Google Scholar 

  167. 167.

    Demkiv T, Halyatkin O, Vistovskyy V, Hevyk V, Yakibchuk P, Gektin A, Voloshinovskii A. X-ray excited luminescence of polystyrene composites loaded with SrF2 nanoparticles. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 847: 47–51

    Google Scholar 

  168. 168.

    Martins P, Martins P, Correia V, Rocha J, Lanceros-Mendez S. Gd2O3:Eu nanoparticle-based poly (vinylidene fluoride) composites for indirect X-ray detection. Journal of Electronic Materials, 2015, 44(1): 129–135

    Article  Google Scholar 

  169. 169.

    Oliveira J, Martins P, Martins P, Correia V, Rocha J, Lanceros-Mendez S. Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors. Applied Physics A, Materials Science & Processing, 2015, 121(2): 581–587

    Article  Google Scholar 

  170. 170.

    Kang Z, Zhang Y, Menkara H, Wagner B K, Summers C J, Lawrence W, Nagarkar V. CdTe quantum dots and polymer nanocomposites for X-ray scintillation and imaging. Applied Physics Letters, 2011, 98(18): 181914

    Article  Google Scholar 

  171. 171.

    Lawrence WG, Thacker S, Palamakumbura S, Riley K J, Nagarkar V V. Quantum dot-organic polymer composite materials for radiation detection and imaging. IEEE Transactions on Nuclear Science, 2012, 59(1): 215–221

    Article  Google Scholar 

  172. 172.

    Chen S, Gaume R. Transparent bulk-size nanocomposites with high inorganic loading. Applied Physics Letters, 2015, 107(24): 241906

    Article  Google Scholar 

  173. 173.

    Chen H, Rogalski M M, Anker J N. Advances in functional X-ray imaging techniques and contrast agents. Physical Chemistry Chemical Physics, 2012, 14(39): 13469–13486

    Article  Google Scholar 

  174. 174.

    Vistovskyy V, Zhyshkovych A, Halyatkin O, Mitina N, Zaichenko A, Rodnyi P, Vasil’ev A, Gektin A, Voloshinovskii A. The luminescence of BaF2 nanoparticles upon high-energy excitation. Journal of Applied Physics, 2014, 116(5): 054308

    Article  Google Scholar 

  175. 175.

    Laval M, Moszynski M, Allemand R, Cormoreche E, Guinet P, Odru R, Vacher J. Barium fluoride—inorganic scintillator for subnanosecond timing. Nuclear Instruments and Methods in Physics Research, 1983, 206(1-2): 169–176

    Article  Google Scholar 

  176. 176.

    Im H J, Saengkerdsub S, Stephan A C, Pawel M D, Holcomb D E, Dai S. Transparent solid-state lithiated neutron scintillators based on self-assembly of polystyrene-block-poly(ethylene oxide) copolymer architectures. Advanced Materials, 2004, 16(19): 1757–1761

    Article  Google Scholar 

  177. 177.

    Kesanli B, Hong K, Meyer K, Im H J, Dai S. Highly efficient solidstate neutron scintillators based on hybrid sol–gel nanocomposite materials. Applied Physics Letters, 2006, 89(21): 214104

    Article  Google Scholar 

  178. 178.

    de Krafft K E, Boyle WS, Burk LM, Zhou O Z, Lin W. Zr- and Hfbased nanoscale metal-organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 2012, 22 (35): 18139–18144

    Article  Google Scholar 

  179. 179.

    Doty F, Bauer C, Skulan A, Grant P, Allendorf M. Scintillating metal-organic frameworks: a new class of radiation detection materials. Advanced Materials, 2009, 21(1): 95–101

    Article  Google Scholar 

  180. 180.

    Perry J J IV, Feng P L, Meek S T, Leong K, Doty F P, Allendorf M D. Connecting structure with function in metal–organic frameworks to design novel photo- and radioluminescent materials. Journal of Materials Chemistry, 2012, 22(20): 10235–10248

    Article  Google Scholar 

  181. 181.

    Alexander P, Lacey A, Lyons L. Absorption and luminescence origins in anthracene crystals. Journal of Chemical Physics, 1961, 34(6): 2200–2201

    Article  Google Scholar 

  182. 182.

    Dekker A, Lipsett F. Fluorescent spectra of some organic solid solutions. Canadian Journal of Physics, 1952, 30(3): 165–173

    Article  Google Scholar 

  183. 183.

    Helfrich W, Lipsett F. Fluorescence and defect fluorescence of anthracene at 4.2° K. Journal of Chemical Physics, 1965, 43(12): 4368–4376

    Article  Google Scholar 

  184. 184.

    Hubbell J, Seltzer S. NIST standard reference database 126, Gaithersburg, MD: National Institute of Standards and Technology 1996

    Google Scholar 

  185. 185.

    Vistovskyy V, Zhyshkovych A, Chornodolskyy Y M, Myagkota O, Gloskovskii A, Gektin A, Vasil’ev A, Rodnyi P, Voloshinovskii A. Self-trapped exciton and core-valence luminescence in BaF2 nanoparticles. Journal of Applied Physics, 2013, 114(19): 194306

    Article  Google Scholar 

  186. 186.

    Vistovskyy V, Zhyshkovych A, Mitina N, Zaichenko A, Gektin A, Vasil'ev A, Voloshinovskii A. Relaxation of electronic excitations in CaF2 nanoparticles. Journal of Applied Physics, 2012, 112(2): 024325

    Article  Google Scholar 

  187. 187.

    Malyy T, Vistovskyy V, Khapko Z, Pushak A, Mitina N, Zaichenko A, Gektin A, Voloshinovskii A. Recombination luminescence of LaPO4-Eu and LaPO4-Pr nanoparticles. Journal of Applied Physics, 2013, 113(22): 224305

    Article  Google Scholar 

  188. 188.

    Vistovskyy V, Malyy T, Pushak A, Vas’Kiv A, Shapoval A, Mitina N, Gektin A, Zaichenko A, Voloshinovskii A. Luminescence and scintillation properties of LuPO4-Ce nanoparticles. Journal of Luminescence, 2014, 145: 232–236

    Article  Google Scholar 

  189. 189.

    Bizarri G, Moses W W, Singh J, Vasil’Ev A, Williams R. An analytical model of nonproportional scintillator light yield in terms of recombination rates. Journal of Applied Physics, 2009, 105(4): 044507

    Article  Google Scholar 

  190. 190.

    Sudheendra L, Das G K, Li C, Stark D, Cena J, Cherry S, Kennedy I M. NaGdF4:Eu3+ nanoparticles for enhanced X-ray excited optical imaging. Chemistry of Materials, 2014, 26(5): 1881–1888

    Article  Google Scholar 

  191. 191.

    Sengupta D, Miller S, Marton Z, Chin F, Nagarkar V, Pratx G. Bright Lu2O3:Eu thin-film scintillators for high-resolution radioluminescence microscopy. Advanced Healthcare Materials, 2015, 4(14): 2064–2070

    Article  Google Scholar 

  192. 192.

    Ikesue A, Aung Y L. Synthesis and performance of advanced ceramic lasers. Journal of the American Ceramic Society, 2006, 89 (6): 1936–1944

    Article  Google Scholar 

  193. 193.

    McCauley J W, Patel P, Chen M, Gilde G, Strassburger E, Paliwal B, Ramesh K, Dandekar D P. AlON: a brief history of its emergence and evolution. Journal of the European Ceramic Society, 2009, 29(2): 223–236

    Article  Google Scholar 

  194. 194.

    Cherepy N, Kuntz J, Seeley Z, Fisher S, Drury O, Sturm B, Hurst T, Sanner R, Roberts J, Payne S. Transparent ceramic scintillators for gamma spectroscopy and radiography. In: Proceedings of Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XII, International Society for Optics and Photonics, 2010, 78050I

    Google Scholar 

  195. 195.

    Kielty M W. Cerium doped glasses: search for a new scintillator. Dissertation for the Master Degree. Clemson: Clemson University, 2016

    Google Scholar 

  196. 196.

    Biswas A, Maciel G, Friend C, Prasad P. Upconversion properties of a transparent Er3+–Yb3+ co-doped LaF3–SiO2 glass-ceramics prepared by sol–gel method. Journal of Non-Crystalline Solids, 2003, 316(2-3): 393–397

    Article  Google Scholar 

  197. 197.

    de Faoite D, Hanlon L, Roberts O, Ulyanov A, McBreen S, Tobin I, Stanton K T. Development of glass-ceramic scintillators for gamma-ray astronomy, Journal of Physics: Conference Series, 2015, 012002

    Google Scholar 

  198. 198.

    Barta M B, Nadler J H, Kang Z, Wagner B K, Rosson R, Kahn B. Effect of host glass matrix on structural and optical behavior of glass–ceramic nanocomposite scintillators. Optical Materials, 2013, 36(2): 287–293

    Article  Google Scholar 

  199. 199.

    Baccaro S, Cecilia A, Mihokova E, Nikl M, Nitsch K, Polato P, Zanella G, Zannoni R. Radiation damage induced by ? irradiation on Ce3+ doped phosphate and silicate scintillating glasses. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 476(3): 785–789

    Google Scholar 

  200. 200.

    Kang Z, Wagner B K, Nadler J H, Rosson R, Kahn B, Barta M B. Transparent glass scintillators, methods of making same and devices using same. Google Patents, 2016

    Google Scholar 

  201. 201.

    Chen W, Cao J, Hu F, Wei R, Chen L, Sun X, Guo H. Highly efficient Na5Gd9F32:Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging. Optical Materials Express, 2018, 8(1): 41–49

    Article  Google Scholar 

  202. 202.

    Hammig M D. Nanoscale Methods to Enhance the Detection of Ionizing Radiation. In: Nenoi M, ed. Current Topics in Ionizing Radiation Research. London: IntechOpen, 2012

    Google Scholar 

  203. 203.

    Guss P, Guise R, Yuan D, Mukhopadhyay S, O'Brien R, Lowe D, Kang Z, Menkara H, Nagarkar V V. Lanthanum halide nanoparticle scintillators for nuclear radiation detection. Journal of Applied Physics, 2013, 113(6): 064303

    Article  Google Scholar 

  204. 204.

    Hall R G. Nanoscintillators for radiation detection. Dissertation for the Master Degree. Arlington: The University of Texas at Arlington, 2013

    Google Scholar 

  205. 205.

    Brown S, Rondinone A J, Dai S. (ORNL), Oak Ridge, TN (United States), 2007

    Google Scholar 

  206. 206.

    Schlomka J P, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R. Experimental feasibility of multi-energy photon-counting Kedge imaging in pre-clinical computed tomography. Physics in Medicine and Biology, 2008, 53(15): 4031–4047

    Article  Google Scholar 

  207. 207.

    Morgan N Y, Kramer-Marek G, Smith P D, Camphausen K, Capala J. Nanoscintillator conjugates as photodynamic therapybased radiosensitizers: calculation of required physical parameters. Radiation Research, 2009, 171(2): 236–244

    Article  Google Scholar 

  208. 208.

    Chen H, Wang G D, Chuang Y J, Zhen Z, Chen X, Biddinger P, Hao Z, Liu F, Shen B, Pan Z, Xie J. Nanoscintillator-mediated Xray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 2015, 15(4): 2249–2256

    Article  Google Scholar 

  209. 209.

    Clement S, Deng W, Camilleri E, Wilson B C, Goldys E M. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. Scientific Reports, 2016, 6(1): 19954

    Article  Google Scholar 

  210. 210.

    Yu X, Liu X, Wu W, Yang K, Mao R, Ahmad F, Chen X, Li W. CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic therapy using Tb-doped Gd-W-nanoscintillators. Angewandte Chemie International Edition, 2019, 58(7): 2017–2022

    Article  Google Scholar 

  211. 211.

    Wang H, Lv B, Tang Z, Zhang M, Ge W, Liu Y, He X, Zhao K, Zheng X, He M, Bu W. Scintillator-based nanohybrids with sacrificial electron prodrug for enhanced X-ray-induced photodynamic therapy. Nano Letters, 2018, 18(9): 5768–5774

    Article  Google Scholar 

  212. 212.

    Bekah D, Cooper D, Kudinov K, Hill C, Seuntjens J, Bradforth S, Nadeau J. Synthesis and characterization of biologically stable, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329: 26–34

    Article  Google Scholar 

  213. 213.

    Butterworth K T, McMahon S J, Currell F J, Prise K M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012, 4(16): 4830–4838

    Article  Google Scholar 

  214. 214.

    Bulin A L, Truillet C, Chouikrat R, Lux F, Frochot C, Amans D, Ledoux G, Tillement O, Perriat P, Barberi-Heyob M, Dujardin C. X-ray-induced singlet oxygen activation with nanoscintillatorcoupled porphyrins. Journal of Physical Chemistry C, 2013, 117 (41): 21583–21589

    Article  Google Scholar 

  215. 215.

    Moronne M M. Development of X-ray excitable luminescent probes for scanning X-ray microscopy. Ultramicroscopy, 1999, 77 (1–2): 23–36

    Article  Google Scholar 

  216. 216.

    Morgan N Y, Kramer-Marek G, Smith P D, Camphausen K, Capala J. Nanoscintillator conjugates as photodynamic therapybased radiosensitizers: calculation of required physical parameters. Radiation Research, 2009, 171(2): 236–244

    Article  Google Scholar 

  217. 217.

    Liu B, Wen L, Zhao X. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering. Solar Energy Materials and Solar Cells, 2008, 92(1): 1–10

    Article  Google Scholar 

  218. 218.

    Chen W, Zhang J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 2006, 6(4): 1159–1166

    Article  Google Scholar 

  219. 219.

    Chen W, Wang S, Westcott S, Zhang J. Energy-transfer nanocomposite materials and methods of making and using same. Google Patents, 2009

    Google Scholar 

  220. 220.

    Pratx G, Carpenter C M, Sun C, Xing L. X-ray luminescence computed tomography via selective excitation: a feasibility study. IEEE Transactions on Medical Imaging, 2010, 29(12): 1992–1999

    Article  Google Scholar 

  221. 221.

    Pratx G, Carpenter C M, Sun C, Rao R P, Xing L. Tomographic molecular imaging of X-ray-excitable nanoparticles. Optics Letters, 2010, 35(20): 3345–3347

    Article  Google Scholar 

  222. 222.

    Li C, Di K, Bec J, Cherry S R. X-ray luminescence optical tomography imaging: experimental studies. Optics Letters, 2013, 38(13): 2339–2341

    Article  Google Scholar 

  223. 223.

    Welsher K, Liu Z, Sherlock S P, Robinson J T, Chen Z, Daranciang D, Dai H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009, 4 (11): 773–780

    Article  Google Scholar 

  224. 224.

    Iverson N M, Barone P W, Shandell M, Trudel L J, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas T P, Reuel N, Parry NM A, Wogan G N, Strano M S. In vivo biosensing via tissuelocalizable near-infrared-fluorescent single-walled carbon nanotubes. Nature Nanotechnology, 2013, 8(11): 873–880

    Article  Google Scholar 

  225. 225.

    Yi H, Ghosh D, Ham M H, Qi J, Barone P W, Strano M S, Belcher A M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Letters, 2012, 12(3): 1176–1183

    Article  Google Scholar 

  226. 226.

    Rogach A L, Eychmüller A, Hickey S G, Kershaw S V. Infraredemitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Small, 2007, 3(4): 536–557

    Article  Google Scholar 

  227. 227.

    Naczynski D J, Sun C, Türkcan S, Jenkins C, Koh A L, Ikeda D, Pratx G, Xing L. X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Letters, 2015, 15(1): 96–102

    Article  Google Scholar 

  228. 228.

    Naczynski D J, Tan M C, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C M, Riman R E, Moghe P V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications, 2013, 4(1): 2199

    Article  Google Scholar 

  229. 229.

    Yorkston J. Recent developments in digital radiography detectors. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(2): 974–985

    Google Scholar 

  230. 230.

    Kim S, Park J, Kang S, Cha B, Cho S, Shin J, Son D, Nam S. Investigation of the imaging characteristics of the Gd2O3:Eu nanophosphor for high-resolution digital X-ray imaging system. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 576(1): 70–74

    Google Scholar 

  231. 231.

    Mupparapu M, Bhargava R N, Mullick S, Singer S R, Taskar N, Yekimov A. Development and application of a novel nanophosphor scintillator for a low-dose, high-resolution digital X-ray imaging system. International Congress Series, Elsevier, 2005, 1281: 1256–1261

    Article  Google Scholar 

  232. 232.

    Chen H, Patrick A L, Yang Z, VanDerveer D G, Anker J N. Highresolution chemical imaging through tissue with an X-ray scintillator sensor. Analytical Chemistry, 2011, 83(13): 5045–5049

    Article  Google Scholar 

  233. 233.

    Yu W W, Chang E, Drezek R, Colvin V L. Water-soluble quantum dots for biomedical applications. Biochemical and Biophysical Research Communications, 2006, 348(3): 781–786

    Article  Google Scholar 

  234. 234.

    Chen W. Nanoparticle fluorescence based technology for biological applications. Journal of Nanoscience and Nanotechnology, 2008, 8(3): 1019–1051

    Article  Google Scholar 

  235. 235.

    Chen W, Westcott S L, Wang S, Liu Y. Dose dependent X-ray luminescence in MgF2:Eu2+, Mn2+ phosphors. Journal of Applied Physics, 2008, 103(11): 113103

    Article  Google Scholar 

  236. 236.

    Liu Y, Zhang Y, Wang S, Pope C, Chen W. Optical behaviors of ZnO-porphyrin conjugates and their potential applications for cancer treatment. Applied Physics Letters, 2008, 92(14): 143901

    Article  Google Scholar 

  237. 237.

    Liu Y, Chen W, Wang S, Joly A G. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 2008, 92(4): 043901

    Article  Google Scholar 

  238. 238.

    Liu Y, Chen W, Wang S, Joly A G, Westcott S, Woo B K. X-ray luminescence of LaF3:Tb3+ and LaF3:Ce3+,Tb3+ water-soluble nanoparticles. Journal of Applied Physics, 2008, 103(6): 063105

    Article  Google Scholar 

  239. 239.

    Juzenas P, Chen W, Sun Y P, Coelho M A N, Generalov R, Generalova N, Christensen I L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 2008, 60(15): 1600–1614

    Article  Google Scholar 

  240. 240.

    Klassen N V, Kedrov V V, Ossipyan Y A, Shmurak S Z, Shmyt’ko I M, Krivko O A, Kudrenko E A, Kurlov V N, Kobelev N P, Kiselev A P, Bozhko S I. Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy. IEEE Transactions on Nanobioscience, 2009, 8(1): 20–32

    Article  Google Scholar 

Download references

Acknowledgements

SKG would like to thank the United States-India Education Foundation (USIEF, India) and the Institute of International Education (IIE, USA) for his Fulbright Nehru Postdoctoral Fellowship (Award# 2268/FNPDR/2017). YM thanks the financial support provided by the IIT startup funds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuanbing Mao.

Additional information

Dr. Santosh Kumar Gupta is a Scientific Officer at the Radiochemistry Division, Bhabha Atomic Research Centre, since 2010. He received his B.Sc. degree from Delhi University, M.Sc. degree from the Indian Institute of Technology, Delhi, and Ph.D. degree from the Homi Bhabha National Institute, Mumbai, India. He has been awarded with various international fellowships, such as Indo-US, JSPS, and Fulbright for Postdoctoral studies. He was the recipient of the Department of Atomic Energy Group Achievement and Young Scientist award from the Govt. of India for 2010 and 2017, respectively. As of today, he has published 137 journal articles with approximately 2200 citations and an hindex of 28. His area of research encompasses photo/radioluminescence of lanthanide and actinides, defect spectroscopy, upconversion of nanoparticles, optical materials for health, energy and environment, etc.

Dr. Yuanbing Mao is a professor of Chemistry at Illinois Institute of Technology. He received his B.Sc. degree from Xiangtan University, M.Sc. degree from the Institute of Chemistry, Chinese Academy of Sciences, and Ph.D. degree from the State University of New York at Stony Brook. He has earned several awards, including the Department of Defense Young Investigator Award and the Outstanding Mentorship Award from the Council on Undergraduate Research, and is a recipient of the DOE Visiting Faculty Program. As of today, he has published more than 100 peer-reviewed journal articles as well as some book chapters and patents. His research interests include nanomaterials, solid-state science and nanoscience with expertise in optoelectronics, energy storage and conversion, and environmental remediation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Mao, Y. Recent advances, challenges, and opportunities of inorganic nanoscintillators. Front. Optoelectron. (2020). https://doi.org/10.1007/s12200-020-1003-5

Download citation

Keywords

  • scintillators
  • nanoscintillators
  • inorganic
  • photoluminescence
  • radioluminescence