Research development on fabrication and optical properties of nonlinear photonic crystals


Since the lasers at fixed wavelengths are unable to meet the requirements of the development of modern science and technology, nonlinear optics is significant for overcoming the obstacle. Investigation on frequency conversion in ferroelectric nonlinear photonic crystals with different superlattices has been being one of the popular research directions in this field. In this paper, some mature fabrication methods of nonlinear photonic crystals are concluded, for example, the electric poling method at room temperature and the femtosecond direct laser writing technique. Then the development of nonlinear photonic crystals with one-dimensional, two-dimensional and three-dimensional superlattices which are used in quasi-phase matching and nonlinear diffraction harmonic generation is introduced. In the meantime, several creative applications of nonlinear photonic crystals are summarized, showing the great value of them in an extensive practical area, such as communication, detection, imaging, and so on.

This is a preview of subscription content, access via your institution.


  1. 1.

    Armstrong J A, Bloembergen N, Ducuing J, Pershan P S. Interactions between light waves in a nonlinear dielectric. Physical Review, 1962, 127(6): 1918–1939

    Google Scholar 

  2. 2.

    Yamada M, Nada N, Saitoh M, Watanabe K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation. Applied Physics Letters, 1993, 62(5): 435–436

    Google Scholar 

  3. 3.

    Zhu S, Zhu Y, Qin Y, Wang H, Ge C, Ming N. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters, 1997, 78(14): 2752–2755

    Google Scholar 

  4. 4.

    Zhu S, Zhu Y, Ming N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278(5339): 843–846

    Google Scholar 

  5. 5.

    Berger V. Nonlinear photonic crystals. Physical Review Letters, 1998, 81(19): 4136–4139

    Google Scholar 

  6. 6.

    Broderick N G, Ross G W, Offerhaus H L, Richardson D J, Hanna D C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Physical Review Letters, 2000, 84(19): 4345–4348

    Google Scholar 

  7. 7.

    Fragemann A, Pasiskevicius V, Laurell F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4. Applied Physics Letters, 2004, 85(3): 375–377

    Google Scholar 

  8. 8.

    Saltiel S M, Neshev D N, Krolikowski W, Arie A, Kivshar Y S. Frequency doubling by nonlinear diffraction in nonlinear photonic crystals. In: Proceedings of International Conference on Transparent Optical Networks. IEEE, 2009, paper Tu.B1.2

  9. 9.

    Sheng Y, Best A, Butt H J, Krolikowski W, Arie A, Koynov K. Three-dimensional ferroelectric domain visualization by Cerenkovtype second harmonic generation. Optics Express, 2010, 18(16): 16539–16545

    Google Scholar 

  10. 10.

    Li H, Mu S, Xu P, Zhong M, Chen C, Hu X, Cui W, Zhu S. Multicolor Čerenkov conical beams generation by cascaded-χ(2) processes in radially poled nonlinear photonic crystals. Applied Physics Letters, 2012, 100(10): 101101

    Google Scholar 

  11. 11.

    Ma B, Kafka K, Chowdhury E. Fourth-harmonic generation via nonlinear diffraction in a 2D LiNbO3 nonlinear photonic crystal from mid-IR ultrashort pulses. Chinese Optics Letters, 2017, 15(5): 051901

    Google Scholar 

  12. 12.

    Liu S, Switkowski K, Chen X, Xu T, Krolikowski W, Sheng Y. Broadband enhancement of Cerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal. Optics Express, 2018, 26(7): 8628–8633

    Google Scholar 

  13. 13.

    Sheng Y, Wang W, Shiloh R, Roppo V, Kong Y, Arie A, Krolikowski W. Cerenkov third-harmonic generation in χ(2) nonlinear photonic crystal. Applied Physics Letters, 2011, 98(24): 241114

    Google Scholar 

  14. 14.

    Yao J, Li G, Xu J, Zhang G. New development of quasi-phase-matching technique. Chinese Journal of Quantum Electronics, 1999, 16(4): 289–294

    Google Scholar 

  15. 15.

    Thomas J, Hilbert V, Geiss R, Pertsch T, Tünnermann A, Nolte S. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser & Photonics Reviews, 2013, 7(3): L17–L20

    Google Scholar 

  16. 16.

    Rosenman G, Urenski P, Agronin A, Rosenwaks Y, Molotskii M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Applied Physics Letters, 2003, 82(1): 103–105

    Google Scholar 

  17. 17.

    Yamada M, Kishima K. Fabrication of periodically reversed domainstructure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electronics Letters, 1991, 27(10): 828–829

    Google Scholar 

  18. 18.

    Wei D, Zhu Y, Zhong W, Cui G, Wang H, He Y, Zhang Y, Lu Y, Xiao M. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Applied Physics Letters, 2017, 110(26): 261104

    Google Scholar 

  19. 19.

    Magel G A, Fejer M M, Byer R L. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Applied Physics Letters, 1990, 56(2): 108–110

    Google Scholar 

  20. 20.

    Xu T, Lu D, Yu H, Zhang H, Zhang Y, Wang J. A naturally grown three-dimensional nonlinear photonic crystal. Applied Physics Letters, 2016, 108(5): 051907

    Google Scholar 

  21. 21.

    Leng H. Manipulation of second harmonic waves and entangled photons using two- and three-dimensional nonlinear photonic crystals. Dissertation for the Doctoral Degree. Nanjing: Nanjing University, 2014, 77–79

    Google Scholar 

  22. 22.

    Fejer M M. Nonlinear optical frequency conversion. Physics Today, 1994, 47(5): 25–32

    Google Scholar 

  23. 23.

    Freund I. Nonlinear diffraction. Physical Review Letters, 1968, 21(19): 1404–1406

    Google Scholar 

  24. 24.

    Kalinowski K, Roedig P, Sheng Y, Ayoub M, Imbrock J, Denz C, Krolikowski W. Enhanced Cerenkov second-harmonic emission in nonlinear photonic structures. Optics Letters, 2012, 37(11): 1832–1834

    Google Scholar 

  25. 25.

    Vyunishev A M, Slabko V V, Baturin I S, Akhmatkhanov A R, Shur V Y. Nonlinear Raman-Nath diffraction of femtosecond laser pulses. Optics Letters, 2014, 39(14): 4231–4234

    Google Scholar 

  26. 26.

    Wang X, Zhao X, Zheng Y, Chen X. Theoretical study on second-harmonic generation in two-dimensional nonlinear photonic crystals. Applied Optics, 2017, 56(3): 750–754

    Google Scholar 

  27. 27.

    Miller G D, Batchko R G, Tulloch W M, Weise D R, Fejer M M, Byer R L. 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate. Optics Letters, 1997, 22(24): 1834–1836

    Google Scholar 

  28. 28.

    Saltiel S M, Neshev D N, Krolikowski W, Arie A, Bang O, Kivshar Y S. Multiorder nonlinear diffraction in frequency doubling processes. Optics Letters, 2009, 34(6): 848–850

    Google Scholar 

  29. 29.

    Liu H, Li J, Zhao X, Zheng Y, Chen X. Nonlinear Raman-Nath second harmonic generation with structured fundamental wave. Optics Express, 2016, 24(14): 15666–15671

    Google Scholar 

  30. 30.

    Li H, Fan Y, Xu P, Zhu S, Lu P, Gao Z, Wang H, Zhu Y, Ming N, He J L. 530-mW quasi-white-light generation using all-solid-state laser technique. Journal of Applied Physics, 2004, 96(12): 7756–7758

    Google Scholar 

  31. 31.

    Chen B, Ren M, Liu R, Zhang C, Sheng Y, Ma B, Li Z. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light, Science & Applications, 2014, 3(7): e189

    Google Scholar 

  32. 32.

    Wang W, Niu X, Zhou C. Study on broadband second harmonic generation in short-range ordered quadratic medium. Journal of Synthetic Crystals, 2014, 43(5): 1252–1256

    Google Scholar 

  33. 33.

    Gu B, Dong B, Zhang Y, Yang G. Enhanced harmonic generation in aperiodic optical superlattices. Applied Physics Letters, 1999, 75(15): 2175–2177

    Google Scholar 

  34. 34.

    Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics, 2015, 9(3): 180–184

    Google Scholar 

  35. 35.

    Reyes Gómez F, Porras-Montenegro N, Oliveira O N Jr, Mejía-Salazar J R. Giant second-harmonic generation in cantor-like metamaterial photonic superlattices. ACS Omega, 2018, 3(12): 17922–17927

    Google Scholar 

  36. 36.

    Gómez F R, Porras-Montenegro N, Oliveira O N, Mejía-Salazar J R. Second harmonic generation in the plasmon-polariton gap of quasiperiodic metamaterial photonic superlattices. Physical Review B, 2018, 98(7): 075406

    Google Scholar 

  37. 37.

    Gómez F R, Mejía-Salazar J R. Bulk plasmon-polariton gap solitons in defective metamaterial photonic superlattices. Optics Letters, 2015, 40(21): 5034–5037

    Google Scholar 

  38. 38.

    Robles-Uriza A X, Gómez F R, Mejía-Salazar J R. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect. Superlattices and Microstructures, 2016, 97: 110–115

    Google Scholar 

  39. 39.

    Gómez F R, Mejía-Salazar J R, Oliveira O N, Porras-Montenegro N. Defect mode in the bulk plasmon-polariton gap for giant enhancement of second harmonic generation. Physical Review B, 2017, 96(7): 075429

    Google Scholar 

  40. 40.

    Kasimov D, Arie A, Winebrand E, Rosenman G, Bruner A, Shaier P, Eger D. Annular symmetry nonlinear frequency converters. Optics Express, 2006, 14(20): 9371–9376

    Google Scholar 

  41. 41.

    Qin Y Q, Zhang C, Zhu Y Y, Hu X P, Zhao G. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures. Physical Review Letters, 2008, 100(6): 063902

    Google Scholar 

  42. 42.

    Chen B, Zhang C, Liu R, Li Z. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals. Applied Physics Letters, 2014, 105(15): 151106

    Google Scholar 

  43. 43.

    Ma B, Wang T, Sheng Y, Ni P, Wang Y, Cheng B, Zhang D. Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice. Applied Physics Letters, 2005, 87(25): 251103

    Google Scholar 

  44. 44.

    Ma B, Ren M, Ma D, Li Z. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure. Applied Physics B, Lasers and Optics, 2013, 111(2): 183–187

    Google Scholar 

  45. 45.

    Zhang Y, Gao Z D, Qi Z, Zhu S N, Ming N B. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides. Physical Review Letters, 2008, 100(16): 163904

    Google Scholar 

  46. 46.

    Ni P, Ma B, Wang X, Cheng B, Zhang D. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching. Applied Physics Letters, 2003, 82(24): 4230–4232

    Google Scholar 

  47. 47.

    Peng L, Hsu C, Ng J, Kung A. Wavelength tunability of second-harmonic generation from two-dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure. Applied Physics Letters, 2004, 84(17): 3250–3252

    Google Scholar 

  48. 48.

    Ni P, Ma B, Feng S, Cheng B, Zhang D. Multiple-wavelength second-harmonic generations in a two-dimensional periodically poled lithium niobate. Optics Communications, 2004, 233(1–3): 199–203

    Google Scholar 

  49. 49.

    Saltiel S M, Sheng Y, Voloch-Bloch N, Neshev D N, Krolikowski W, Arie A, Koynov K, Kivshar Y S. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE Journal of Quantum Electronics, 2009, 45(11): 1465–1472

    Google Scholar 

  50. 50.

    Wang T, Ma B, Sheng Y, Ni P, Cheng B, Zhang D. Large angle acceptance of quasi-phase-matched second harmonic generation in a homocentrically poled LiNbO3. Optics Communications, 2005, 252(4–6): 397–401

    Google Scholar 

  51. 51.

    Sheng Y, Koynov K, Zhang D. Collinear second harmonic generation of 20 wavelengths in a single two-dimensional decagonal nonlinear photonic quasi-crystal. Optics Communications, 2009, 282(17): 3602–3606

    Google Scholar 

  52. 52.

    Hou B, Xu G, Wen W, Wong G K. Diffraction by an optical fractal grating. Applied Physics Letters, 2004, 85(25): 6125–6127

    Google Scholar 

  53. 53.

    Park H, Camper A, Kafka K, Ma B, Lai Y H, Blaga C, Agostini P, DiMauro L F, Chowdhury E. High-order harmonic generations in intense MIR fields by cascade three-wave mixing in a fractal-poled LiNbO3 photonic crystal. Optics Letters, 2017, 42(19): 4020–4023

    Google Scholar 

  54. 54.

    Ma B, Li H. High-order nonlinear diffraction harmonics in nonlinear photonic crystals. Chinese Journal of Lasers, 2019, 46(2): 0208001

    Google Scholar 

  55. 55.

    Mateos L, Molina P, Galisteo J, López C, Bausá L E, Ramírez M O. Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal. Optics Express, 2012, 20(28): 29940–29948

    Google Scholar 

  56. 56.

    Wang W, Sheng Y, Kong Y, Arie A, Krolikowski W. Multiple Cerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure. Optics Letters, 2010, 35(22): 3790–3792

    Google Scholar 

  57. 57.

    Saltiel S M, Neshev D N, Krolikowski W, Voloch-Bloch N, Arie A, Bang O, Kivshar Y S. Nonlinear diffraction from a virtual beam. Physical Review Letters, 2010, 104(8): 083902

    Google Scholar 

  58. 58.

    Vyunishev A M, Arkhipkin V G, Baturin I S, Akhmatkhanov A R, Shur V Y, Chirkin A S. Mutiple nonlinear Bragg diffraction of femtosecond laser pulses in a χ(2) photonic lattice with hexagonal domains. Laser Physics Letters, 2018, 15(4): 045401

    Google Scholar 

  59. 59.

    Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533

    Google Scholar 

  60. 60.

    Wei D, Wang C, Wang H, Hu X, Wei D, Fang X, Zhang Y, Wu D, Hu Y, Li J, Zhu S, Xiao M. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 2018, 12(10): 596–600

    Google Scholar 

  61. 61.

    Xu T, Switkowski K, Chen X, Liu S, Koynov K, Yu H, Zhang H, Wang J, Sheng Y, Krolikowski W. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics, 2018, 12(10): 591–595

    Google Scholar 

  62. 62.

    Zhang J, Zhao X, Zheng Y, Li H, Chen X. Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals. Optics Express, 2018, 26(12): 15675–15682

    Google Scholar 

  63. 63.

    Powers P E, Kulp T J, Bisson S E. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Optics Letters, 1998, 23(3): 159–161

    Google Scholar 

  64. 64.

    Sasaki Y, Avetisyan Y, Yokoyama H, Ito H. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. Optics Letters, 2005, 30(21): 2927–2929

    Google Scholar 

  65. 65.

    Shapira A, Naor L, Arie A. Nonlinear optical holograms for spatial and spectral shaping of light waves. Science Bulletin, 2015, 60(16): 1403–1415

    Google Scholar 

  66. 66.

    Tokura A, Asobe M, Enbutsu K, Yoshihara T, Hashida S N, Takenouchi H. Real-time N2O gas detection system for agricultural production using a 4.6-µm-band laser source based on a periodically poled LiNbO3 ridge waveguide. Sensors (Basel), 2013, 13(8): 9999–10013

    Google Scholar 

  67. 67.

    Myers L E, Miller G D, Eckardt R C, Fejer M M, Byer R L, Bosenberg W R. Quasi-phase-matched 1.064-um-pumped optical parametric oscillator in bulk periodically poled LiNbO3. Optics Letters, 1995, 20(1): 52–54

    Google Scholar 

  68. 68.

    Myers L E, Bosenberg W R. Periodically poled lithium niobate and quasi-phase-matched optical oarametric oscillators. IEEE Journal of Quantum Electronics, 1997, 33(10): 1663–1672

    Google Scholar 

  69. 69.

    Burr K C, Tang C L, Arbore M A, Fejer M M. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate. Applied Physics Letters, 1997, 70(25): 3341–3343

    Google Scholar 

  70. 70.

    Batchko R G, Weise D R, Plettner T, Miller G D, Fejer M M, Byer R L. Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate. Optics Letters, 1998, 23(3): 168–170

    Google Scholar 

  71. 71.

    Wang T D, Lin S T, Lin Y Y, Chiang A C, Huang Y C. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate. Optics Express, 2008, 16(9): 6471–6478

    Google Scholar 

  72. 72.

    Liu H, Zhao X, Li H, Zheng Y, Chen X. Dynamic computergenerated nonlinear optical holograms in a non-collinear second-harmonic generation process. Optics Letters, 2018, 43(14): 3236–3239

    Google Scholar 

Download references


The work was supported by the Fundamental Research Funds for the Central Universities (No. 2018CUCTJ043).

Author information



Corresponding author

Correspondence to Boqin Ma.

Additional information

Huangjia Li received the bachelor degree of engineering from Communication University of China. She is currently pursuing the master degree in School of Data Science and Media Intelligence, Communication University of China. Her present research work involves the nonlinear photonic crystals with snowflake superlattices and their nonlinear optical properties.

Boqin Ma received the Ph.D. degree from the Institute of Physics, Chinese Academy of Sciences, Beijing, China, in the field of Optics in 2005. Since then, she joined the Faculty of Science and Technology, Communication University of China. In 2011, she received the position of associate professor. She has been working on the nonlinear interactions between nonlinear photonic crystals and laser beams.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ma, B. Research development on fabrication and optical properties of nonlinear photonic crystals. Front. Optoelectron. 13, 35–49 (2020).

Download citation


  • quasi-phase matching (QPM)
  • nonlinear diffraction (ND)
  • superlattice
  • nonlinear photonic crystal (NPC)
  • reciprocal lattice vector (RLV)