Abstract
Since the lasers at fixed wavelengths are unable to meet the requirements of the development of modern science and technology, nonlinear optics is significant for overcoming the obstacle. Investigation on frequency conversion in ferroelectric nonlinear photonic crystals with different superlattices has been being one of the popular research directions in this field. In this paper, some mature fabrication methods of nonlinear photonic crystals are concluded, for example, the electric poling method at room temperature and the femtosecond direct laser writing technique. Then the development of nonlinear photonic crystals with one-dimensional, two-dimensional and three-dimensional superlattices which are used in quasi-phase matching and nonlinear diffraction harmonic generation is introduced. In the meantime, several creative applications of nonlinear photonic crystals are summarized, showing the great value of them in an extensive practical area, such as communication, detection, imaging, and so on.
This is a preview of subscription content, access via your institution.
References
- 1.
Armstrong J A, Bloembergen N, Ducuing J, Pershan P S. Interactions between light waves in a nonlinear dielectric. Physical Review, 1962, 127(6): 1918–1939
- 2.
Yamada M, Nada N, Saitoh M, Watanabe K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation. Applied Physics Letters, 1993, 62(5): 435–436
- 3.
Zhu S, Zhu Y, Qin Y, Wang H, Ge C, Ming N. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters, 1997, 78(14): 2752–2755
- 4.
Zhu S, Zhu Y, Ming N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278(5339): 843–846
- 5.
Berger V. Nonlinear photonic crystals. Physical Review Letters, 1998, 81(19): 4136–4139
- 6.
Broderick N G, Ross G W, Offerhaus H L, Richardson D J, Hanna D C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Physical Review Letters, 2000, 84(19): 4345–4348
- 7.
Fragemann A, Pasiskevicius V, Laurell F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4. Applied Physics Letters, 2004, 85(3): 375–377
- 8.
Saltiel S M, Neshev D N, Krolikowski W, Arie A, Kivshar Y S. Frequency doubling by nonlinear diffraction in nonlinear photonic crystals. In: Proceedings of International Conference on Transparent Optical Networks. IEEE, 2009, paper Tu.B1.2
- 9.
Sheng Y, Best A, Butt H J, Krolikowski W, Arie A, Koynov K. Three-dimensional ferroelectric domain visualization by Cerenkovtype second harmonic generation. Optics Express, 2010, 18(16): 16539–16545
- 10.
Li H, Mu S, Xu P, Zhong M, Chen C, Hu X, Cui W, Zhu S. Multicolor Čerenkov conical beams generation by cascaded-χ(2) processes in radially poled nonlinear photonic crystals. Applied Physics Letters, 2012, 100(10): 101101
- 11.
Ma B, Kafka K, Chowdhury E. Fourth-harmonic generation via nonlinear diffraction in a 2D LiNbO3 nonlinear photonic crystal from mid-IR ultrashort pulses. Chinese Optics Letters, 2017, 15(5): 051901
- 12.
Liu S, Switkowski K, Chen X, Xu T, Krolikowski W, Sheng Y. Broadband enhancement of Cerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal. Optics Express, 2018, 26(7): 8628–8633
- 13.
Sheng Y, Wang W, Shiloh R, Roppo V, Kong Y, Arie A, Krolikowski W. Cerenkov third-harmonic generation in χ(2) nonlinear photonic crystal. Applied Physics Letters, 2011, 98(24): 241114
- 14.
Yao J, Li G, Xu J, Zhang G. New development of quasi-phase-matching technique. Chinese Journal of Quantum Electronics, 1999, 16(4): 289–294
- 15.
Thomas J, Hilbert V, Geiss R, Pertsch T, Tünnermann A, Nolte S. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser & Photonics Reviews, 2013, 7(3): L17–L20
- 16.
Rosenman G, Urenski P, Agronin A, Rosenwaks Y, Molotskii M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Applied Physics Letters, 2003, 82(1): 103–105
- 17.
Yamada M, Kishima K. Fabrication of periodically reversed domainstructure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electronics Letters, 1991, 27(10): 828–829
- 18.
Wei D, Zhu Y, Zhong W, Cui G, Wang H, He Y, Zhang Y, Lu Y, Xiao M. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Applied Physics Letters, 2017, 110(26): 261104
- 19.
Magel G A, Fejer M M, Byer R L. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Applied Physics Letters, 1990, 56(2): 108–110
- 20.
Xu T, Lu D, Yu H, Zhang H, Zhang Y, Wang J. A naturally grown three-dimensional nonlinear photonic crystal. Applied Physics Letters, 2016, 108(5): 051907
- 21.
Leng H. Manipulation of second harmonic waves and entangled photons using two- and three-dimensional nonlinear photonic crystals. Dissertation for the Doctoral Degree. Nanjing: Nanjing University, 2014, 77–79
- 22.
Fejer M M. Nonlinear optical frequency conversion. Physics Today, 1994, 47(5): 25–32
- 23.
Freund I. Nonlinear diffraction. Physical Review Letters, 1968, 21(19): 1404–1406
- 24.
Kalinowski K, Roedig P, Sheng Y, Ayoub M, Imbrock J, Denz C, Krolikowski W. Enhanced Cerenkov second-harmonic emission in nonlinear photonic structures. Optics Letters, 2012, 37(11): 1832–1834
- 25.
Vyunishev A M, Slabko V V, Baturin I S, Akhmatkhanov A R, Shur V Y. Nonlinear Raman-Nath diffraction of femtosecond laser pulses. Optics Letters, 2014, 39(14): 4231–4234
- 26.
Wang X, Zhao X, Zheng Y, Chen X. Theoretical study on second-harmonic generation in two-dimensional nonlinear photonic crystals. Applied Optics, 2017, 56(3): 750–754
- 27.
Miller G D, Batchko R G, Tulloch W M, Weise D R, Fejer M M, Byer R L. 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate. Optics Letters, 1997, 22(24): 1834–1836
- 28.
Saltiel S M, Neshev D N, Krolikowski W, Arie A, Bang O, Kivshar Y S. Multiorder nonlinear diffraction in frequency doubling processes. Optics Letters, 2009, 34(6): 848–850
- 29.
Liu H, Li J, Zhao X, Zheng Y, Chen X. Nonlinear Raman-Nath second harmonic generation with structured fundamental wave. Optics Express, 2016, 24(14): 15666–15671
- 30.
Li H, Fan Y, Xu P, Zhu S, Lu P, Gao Z, Wang H, Zhu Y, Ming N, He J L. 530-mW quasi-white-light generation using all-solid-state laser technique. Journal of Applied Physics, 2004, 96(12): 7756–7758
- 31.
Chen B, Ren M, Liu R, Zhang C, Sheng Y, Ma B, Li Z. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light, Science & Applications, 2014, 3(7): e189
- 32.
Wang W, Niu X, Zhou C. Study on broadband second harmonic generation in short-range ordered quadratic medium. Journal of Synthetic Crystals, 2014, 43(5): 1252–1256
- 33.
Gu B, Dong B, Zhang Y, Yang G. Enhanced harmonic generation in aperiodic optical superlattices. Applied Physics Letters, 1999, 75(15): 2175–2177
- 34.
Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics, 2015, 9(3): 180–184
- 35.
Reyes Gómez F, Porras-Montenegro N, Oliveira O N Jr, Mejía-Salazar J R. Giant second-harmonic generation in cantor-like metamaterial photonic superlattices. ACS Omega, 2018, 3(12): 17922–17927
- 36.
Gómez F R, Porras-Montenegro N, Oliveira O N, Mejía-Salazar J R. Second harmonic generation in the plasmon-polariton gap of quasiperiodic metamaterial photonic superlattices. Physical Review B, 2018, 98(7): 075406
- 37.
Gómez F R, Mejía-Salazar J R. Bulk plasmon-polariton gap solitons in defective metamaterial photonic superlattices. Optics Letters, 2015, 40(21): 5034–5037
- 38.
Robles-Uriza A X, Gómez F R, Mejía-Salazar J R. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect. Superlattices and Microstructures, 2016, 97: 110–115
- 39.
Gómez F R, Mejía-Salazar J R, Oliveira O N, Porras-Montenegro N. Defect mode in the bulk plasmon-polariton gap for giant enhancement of second harmonic generation. Physical Review B, 2017, 96(7): 075429
- 40.
Kasimov D, Arie A, Winebrand E, Rosenman G, Bruner A, Shaier P, Eger D. Annular symmetry nonlinear frequency converters. Optics Express, 2006, 14(20): 9371–9376
- 41.
Qin Y Q, Zhang C, Zhu Y Y, Hu X P, Zhao G. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures. Physical Review Letters, 2008, 100(6): 063902
- 42.
Chen B, Zhang C, Liu R, Li Z. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals. Applied Physics Letters, 2014, 105(15): 151106
- 43.
Ma B, Wang T, Sheng Y, Ni P, Wang Y, Cheng B, Zhang D. Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice. Applied Physics Letters, 2005, 87(25): 251103
- 44.
Ma B, Ren M, Ma D, Li Z. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure. Applied Physics B, Lasers and Optics, 2013, 111(2): 183–187
- 45.
Zhang Y, Gao Z D, Qi Z, Zhu S N, Ming N B. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides. Physical Review Letters, 2008, 100(16): 163904
- 46.
Ni P, Ma B, Wang X, Cheng B, Zhang D. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching. Applied Physics Letters, 2003, 82(24): 4230–4232
- 47.
Peng L, Hsu C, Ng J, Kung A. Wavelength tunability of second-harmonic generation from two-dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure. Applied Physics Letters, 2004, 84(17): 3250–3252
- 48.
Ni P, Ma B, Feng S, Cheng B, Zhang D. Multiple-wavelength second-harmonic generations in a two-dimensional periodically poled lithium niobate. Optics Communications, 2004, 233(1–3): 199–203
- 49.
Saltiel S M, Sheng Y, Voloch-Bloch N, Neshev D N, Krolikowski W, Arie A, Koynov K, Kivshar Y S. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE Journal of Quantum Electronics, 2009, 45(11): 1465–1472
- 50.
Wang T, Ma B, Sheng Y, Ni P, Cheng B, Zhang D. Large angle acceptance of quasi-phase-matched second harmonic generation in a homocentrically poled LiNbO3. Optics Communications, 2005, 252(4–6): 397–401
- 51.
Sheng Y, Koynov K, Zhang D. Collinear second harmonic generation of 20 wavelengths in a single two-dimensional decagonal nonlinear photonic quasi-crystal. Optics Communications, 2009, 282(17): 3602–3606
- 52.
Hou B, Xu G, Wen W, Wong G K. Diffraction by an optical fractal grating. Applied Physics Letters, 2004, 85(25): 6125–6127
- 53.
Park H, Camper A, Kafka K, Ma B, Lai Y H, Blaga C, Agostini P, DiMauro L F, Chowdhury E. High-order harmonic generations in intense MIR fields by cascade three-wave mixing in a fractal-poled LiNbO3 photonic crystal. Optics Letters, 2017, 42(19): 4020–4023
- 54.
Ma B, Li H. High-order nonlinear diffraction harmonics in nonlinear photonic crystals. Chinese Journal of Lasers, 2019, 46(2): 0208001
- 55.
Mateos L, Molina P, Galisteo J, López C, Bausá L E, Ramírez M O. Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal. Optics Express, 2012, 20(28): 29940–29948
- 56.
Wang W, Sheng Y, Kong Y, Arie A, Krolikowski W. Multiple Cerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure. Optics Letters, 2010, 35(22): 3790–3792
- 57.
Saltiel S M, Neshev D N, Krolikowski W, Voloch-Bloch N, Arie A, Bang O, Kivshar Y S. Nonlinear diffraction from a virtual beam. Physical Review Letters, 2010, 104(8): 083902
- 58.
Vyunishev A M, Arkhipkin V G, Baturin I S, Akhmatkhanov A R, Shur V Y, Chirkin A S. Mutiple nonlinear Bragg diffraction of femtosecond laser pulses in a χ(2) photonic lattice with hexagonal domains. Laser Physics Letters, 2018, 15(4): 045401
- 59.
Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533
- 60.
Wei D, Wang C, Wang H, Hu X, Wei D, Fang X, Zhang Y, Wu D, Hu Y, Li J, Zhu S, Xiao M. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 2018, 12(10): 596–600
- 61.
Xu T, Switkowski K, Chen X, Liu S, Koynov K, Yu H, Zhang H, Wang J, Sheng Y, Krolikowski W. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics, 2018, 12(10): 591–595
- 62.
Zhang J, Zhao X, Zheng Y, Li H, Chen X. Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals. Optics Express, 2018, 26(12): 15675–15682
- 63.
Powers P E, Kulp T J, Bisson S E. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Optics Letters, 1998, 23(3): 159–161
- 64.
Sasaki Y, Avetisyan Y, Yokoyama H, Ito H. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. Optics Letters, 2005, 30(21): 2927–2929
- 65.
Shapira A, Naor L, Arie A. Nonlinear optical holograms for spatial and spectral shaping of light waves. Science Bulletin, 2015, 60(16): 1403–1415
- 66.
Tokura A, Asobe M, Enbutsu K, Yoshihara T, Hashida S N, Takenouchi H. Real-time N2O gas detection system for agricultural production using a 4.6-µm-band laser source based on a periodically poled LiNbO3 ridge waveguide. Sensors (Basel), 2013, 13(8): 9999–10013
- 67.
Myers L E, Miller G D, Eckardt R C, Fejer M M, Byer R L, Bosenberg W R. Quasi-phase-matched 1.064-um-pumped optical parametric oscillator in bulk periodically poled LiNbO3. Optics Letters, 1995, 20(1): 52–54
- 68.
Myers L E, Bosenberg W R. Periodically poled lithium niobate and quasi-phase-matched optical oarametric oscillators. IEEE Journal of Quantum Electronics, 1997, 33(10): 1663–1672
- 69.
Burr K C, Tang C L, Arbore M A, Fejer M M. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate. Applied Physics Letters, 1997, 70(25): 3341–3343
- 70.
Batchko R G, Weise D R, Plettner T, Miller G D, Fejer M M, Byer R L. Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate. Optics Letters, 1998, 23(3): 168–170
- 71.
Wang T D, Lin S T, Lin Y Y, Chiang A C, Huang Y C. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate. Optics Express, 2008, 16(9): 6471–6478
- 72.
Liu H, Zhao X, Li H, Zheng Y, Chen X. Dynamic computergenerated nonlinear optical holograms in a non-collinear second-harmonic generation process. Optics Letters, 2018, 43(14): 3236–3239
Acknowledgements
The work was supported by the Fundamental Research Funds for the Central Universities (No. 2018CUCTJ043).
Author information
Affiliations
Corresponding author
Additional information
Huangjia Li received the bachelor degree of engineering from Communication University of China. She is currently pursuing the master degree in School of Data Science and Media Intelligence, Communication University of China. Her present research work involves the nonlinear photonic crystals with snowflake superlattices and their nonlinear optical properties.
Boqin Ma received the Ph.D. degree from the Institute of Physics, Chinese Academy of Sciences, Beijing, China, in the field of Optics in 2005. Since then, she joined the Faculty of Science and Technology, Communication University of China. In 2011, she received the position of associate professor. She has been working on the nonlinear interactions between nonlinear photonic crystals and laser beams.
Rights and permissions
About this article
Cite this article
Li, H., Ma, B. Research development on fabrication and optical properties of nonlinear photonic crystals. Front. Optoelectron. 13, 35–49 (2020). https://doi.org/10.1007/s12200-019-0946-x
Received:
Accepted:
Published:
Issue Date:
Keywords
- quasi-phase matching (QPM)
- nonlinear diffraction (ND)
- superlattice
- nonlinear photonic crystal (NPC)
- reciprocal lattice vector (RLV)