Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062
Article
Google Scholar
John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489
Article
Google Scholar
Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals: putting a new twist on light. Nature, 1997, 386(6621): 143–149
Google Scholar
Sakoda K. Optical Properties of Photonic Crystals. New York: Springer, 2001
Google Scholar
Zhai T, Liu D, Zhang X. Photonic crystals and microlasers fabricated with low refractive index material. Frontiers in Physics, 2010, 5(3): 266–276
Google Scholar
Krauss T F, Rue R, Brand S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature, 1996, 383(6602): 699–702
Google Scholar
Zoorob M E, Charlton M D, Parker G J, Baumberg J J, Netti M C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 2000, 404(6779): 740–743
Google Scholar
Campbell M, Sharp D N, Harrison M T, Denning R G, Turberfield A J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404(6773): 53–56
Google Scholar
Bendickson J M, Dowling J P, Scalora M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Physical Review E, 1996, 53(4): 4107–4121
Google Scholar
Boedecker G, Henkel C. All-frequency effective medium theory of a photonic crystal. Optics Express, 2003, 11(13): 1590–1595
Google Scholar
Wang Z, Zhai T, Lin J, Liu D. Effect of surface truncation on mode density in photonic crystals. Journal of the Optical Society of America B, Optical Physics, 2007, 24(9): 2416–2420
Google Scholar
Dowling J, Scalora M, Bloemer M, Bowden C. The photonic band edge laser: a new approach to gain enhancement. Journal of Applied Physics, 1994, 75(4): 1896–1899
Google Scholar
Cho C O, Jeong J, Lee J, Jeon H, Kim I, Jang D H, Park Y S, Woo J C. Photonic crystal band edge laser array with a holographically generated square-lattice pattern. Applied Physics Letters, 2005, 87(16): 161102
Google Scholar
Kim H, Lee M, Jeong H, Hwang M S, Kim H R, Park S, Park Y D, Lee T, Park H G, Jeon H. Electrical modulation of a photonic crystal band-edge laser with a graphene monolayer. Nanoscale, 2018, 10(18): 8496–8502
Google Scholar
Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
Google Scholar
Bose R, Sridharan D, Kim H, Solomon G S, Waks E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Physical Review Letters, 2012, 108(22): 227402
Google Scholar
Nozaki K, Shinya A, Matsuo S, Sato T, Kuramochi E, Notomi M. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Optics Express, 2013, 21(10): 11877–11888
Google Scholar
Liu Q, Ouyang Z, Wu C J, Liu C P, Wang J C. All-optical half adder based on cross structures in two-dimensional photonic crystals. Optics Express, 2008, 16(23): 18992–19000
Google Scholar
McCutcheon M W, Rieger G W, Young J F, Dalacu D, Poole P J, Williams R L. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Applied Physics Letters, 2009, 95(22): 221102
Google Scholar
Fu Y, Hu X, Gong Q. Silicon photonic crystal all-optical logic gates. Physics Letters A, 2013, 377(3–4): 329–333
Google Scholar
Rupasov V I V I, Singh M. Quantum gap solitons and many-polariton-atom bound states in dispersive medium and photonic band gap. Physical Review Letters, 1996, 77(2): 338–341
Google Scholar
Xie P, Zhang Z Q. Multifrequency gap solitons in nonlinear photonic crystals. Physical Review Letters, 2003, 91(21): 213904
Google Scholar
Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N. Conical diffraction and gap solitons in honeycomb photonic lattices. Physical Review Letters, 2007, 98(10): 103901
Google Scholar
Wu J, Day D, Gu M. A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Applied Physics Letters, 2008, 92(7): 071108
Google Scholar
Kang C, Phare C T, Vlasov Y A, Assefa S, Weiss S M. Photonic crystal slab sensor with enhanced surface area. Optics Express, 2010, 18(26): 27930–27937
Google Scholar
Sørensen K T, Ingvorsen C B, Nielsen L H, Kristensen A. Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor. Optics Express, 2018, 26(5): 5416–5422
Google Scholar
Painter O, Lee R K, Scherer A, Yariv A, O’Brien J D, Dapkus P D, Kim I. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819–1821
Google Scholar
Park H G, Kim S H, Kwon S H, Ju Y G, Yang J K, Baek J H, Kim S B, Lee Y H. Electrically driven single-cell photonic crystal laser. Science, 2004, 305(5689): 1444–1447
Google Scholar
Yang X, Wong C W. Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers. Optics Express, 2007, 15(8): 4763–4780
Google Scholar
Ryu H Y, Kwon S H, Lee Y J, Lee Y H, Kim F. Very low threshold photonic band edge lasers from free standing trlangular photonic crystal slabs. Applied Physics Letters, 2002, 80(19): 3476–3478
Google Scholar
Arango F B, Christiansen M B, Gersborg-Hansen M, Kristensen A. Optofluidic tuning of photonic crystal band edge lasers. Applied Physics Letters, 2007, 91(22): 223503
Google Scholar
Jung H, Lee M, Han C, Park Y, Cho K S, Jeon H. Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide. Optics Express, 2017, 25(26): 32919
Google Scholar
Monat C, Seassal C, Letartre X, Regreny P, Rojo-Romeo P, Viktorovitch P, Le Vassor d’Yerville M, Cassagne D, Albert J P, Jalaguier E, Pocas S, Aspar B. InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser. Applied Physics Letters, 2002, 81(27): 5102–5104
Google Scholar
Imada M, Noda S, Chutinan A, Tokuda T, Murata M, Sasaki G. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Applied Physics Letters, 1999, 75(3): 316–318
Google Scholar
Kok M, Lu W, Lee J, Tam W, Wong G, Chan C. Lasing from dyedoped photonic crystals with graded layers in dichromate gelatin emulsions. Applied Physics Letters, 2008, 92(15): 151108
Google Scholar
Meier M, Mekis A, Dodabalapur A, Timko A, Slusher R E, Joannopoulos J D, Nalamasu O. Laser action from two-dimensional distributed feedback in photonic crystals. Applied Physics Letters, 1999, 74(1): 7–9
Google Scholar
Riechel S, Kallinger C, Lemmer U, Feldmann J, Gombert A, Wittwer V, Scherf U. A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Applied Physics Letters, 2000, 77(15): 2310–2312
Google Scholar
Notomi M, Suzuki H, Tamamura T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Applied Physics Letters, 2001, 78(10): 1325–1327
Google Scholar
Turnbull G, Andrew P, Jory M, Barnes W L, Samuel I. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Physical Review B, 2001, 64(12): 125122
Google Scholar
Andrew P, Turnbull G, Samuel I, Barnes W. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956
Google Scholar
Turnbull G, Andrew P, Barnes W L, Samuel I. Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Physical Review B, 2003, 67(16): 165107
Google Scholar
Samuel I D, Turnbull G A. Polymer lasers: recent advances. Materials Today, 2004, 7(9): 28–35
Google Scholar
Herrnsdorf J, Guilhabert B, Chen Y, Kanibolotsky A, Mackintosh A, Pethrick R, Skabara P, Gu E, Laurand N, Dawson M. Flexible blue-emitting encapsulated organic semiconductor DFB laser. Optics Express, 2010, 18(25): 25535–25545
Google Scholar
Zhai T, Zhang X, Pang Z. Polymer laser based on active waveguide grating structures. Optics Express, 2011, 19(7): 6487–6492
Google Scholar
Vecchi G, Raineri F, Sagnes I, Yacomotti A, Monnier P, Karle T J, Lee K H, Braive R, Le Gratiet L, Guilet S, Beaudoin G, Taneau A, Bouchoule S, Levenson A, Raj R. Continuous-wave operation of photonic band-edge laser near 1.55 µm on silicon wafer. Optics Express, 2007, 15(12): 7551–7556
Google Scholar
Van der Ziel J P, Tsang W T, Logan R A, Mikulyak R M, Augustyniak W M. Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers. Applied Physics Letters, 1981, 39(7): 525–527
Google Scholar
Dahmani B, Hollberg L, Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback. Optics Letters, 1987, 12(11): 876–878
Google Scholar
San Miguel M, Feng Q, Moloney J V. Light-polarization dynamics in surface-emitting semiconductor lasers. Physical Review A, 1995, 52(2): 1728–1739
Google Scholar
Shank C V. Physics of dye lasers. Reviews of Modern Physics, 1975, 47(3): 649–657
Google Scholar
Ledentsov N N, Ustinov V M, Egorov A Y, Zhukov A E, Maksimov M V, Tabatadze I G, Kop’ev P S. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors, 1994, 28(8): 832–834
Google Scholar
Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Y, Zhukov A E, Maximov M V, Kop’ev P S, Alferov Z I. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied Physics Letters, 1996, 69(9): 1226–1228
Google Scholar
Bimberg D, Grundmann M, Heinrichsdorff F, Ledentsov N N, Ustinov V M, Zhukov A E, Kovsh A R, Maximov M V, Shernyakov Y M, Volovik B V, Tsatsul’nikov A F, Kop’ev P S, Alferov Z I. Quantum dot lasers: breakthrough in optoelectronics. Thin Solid Films, 2000, 367(1–2): 235–249
Google Scholar
Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834
Google Scholar
Wang K, Wang S, Xiao S, Song Q. Recent advances in perovskite micro- and nanolasers. Advanced Optical Materials, 2018, 6(18): 1800278
Google Scholar
Wei Q, Li X, Liang C, Zhang Z, Guo J, Hong G, Xing G, Huang W. Recent progress in metal halide perovskite micro- and nanolasers. Advanced Optical Materials, 2019, 7(20): 1900080
Google Scholar
Zhang W F, Zhu H, Yu S F, Yang H Y. Observation of lasing emission from carbon nanodots in organic solvents. Advanced Materials, 2012, 24(17): 2263–2267
Google Scholar
Qu S, Liu X, Guo X, Chu M, Zhang L, Shen D. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Advanced Functional Materials, 2014, 24(18): 2689–2695
Google Scholar
Tang C W, Vanslyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915
Google Scholar
Schön J H, Kloc C, Dodabalapur A, Batlogg B. An organic solid state injection laser. Science, 2000, 289(5479): 599–601
Google Scholar
Montes V A, Li G, Pohl R, Shinar J, Anzenbacher P. Effective color tuning in organic light-emitting diodes based on aluminum Tris(5-aryl-8-hydroxyquinoline) complexes. Advanced Materials, 2004, 16(22): 2001–2003
Google Scholar
Lawrence J R, Turnbull G A, Samuel I D, Richards G J, Burn P L. Optical amplification in a first-generation dendritic organic semiconductor. Optics Letters, 2004, 29(8): 869–871
Google Scholar
Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J, Rabe T, Riedl T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P. Organic solid-state ultraviolet-laser based on spiro-terphenyl. Applied Physics Letters, 2005, 87(16): 161103
Google Scholar
Xia R, Lai W Y, Levermore P A, Huang W, Bradley D D C. Low-threshold distributed-feedback lasers based on Pyrene-cored starburst molecules with 1,3,6,8-attached Oligo(9,9-Dialkylfluorene) arms. Advanced Functional Materials, 2009, 19(17): 2844–2850
Google Scholar
Tessler N, Denton G, Friend R. Lasing from conjugated-polymer microcavities. Nature, 1996, 382(6593): 695–697
Google Scholar
Campoy-Quiles M, Heliotis G, Xia R, Ariu M, Pintani M, Etchegoin P, Bradley D D C. Ellipsometric characterization of the optical constants of polyfluorene gain media. Advanced Functional Materials, 2005, 15(6): 925–933
Google Scholar
Yap B K, Xia R, Campoy-Quiles M, Stavrinou P N, Bradley D D C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Materials, 2008, 7(5): 376–380
Google Scholar
Lawrence J R, Turnbull G A, Samuel I D W. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025
Google Scholar
Goossens M, Ruseckas A, Turnbull G A, Samuel I D W. Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Applied Physics Letters, 2004, 85(1): 31–33
Google Scholar
O’Neill M, Kelly S M. Ordered materials for organic electronics and photonics. Advanced Materials, 2011, 23(5): 566–584
Google Scholar
Stehr J, Crewett J, Schindler F, Sperling R, von Plessen G, Lemmer U, Lupton J M, Klar T A, Feldmann J, Holleitner A W, Forster M, Scherf U. A low threshold polymer laser based on metallic nanoparticle gratings. Advanced Materials, 2003, 15(20): 1726–1729
Google Scholar
Reufer M, Riechel S, Lupton J, Feldmann J, Lemmer U, Schneider D, Benstem T, Dobbertin T, Kowalsky W, Gombert A, Forberich K, Wittwer V, Scherf U. Low-threshold polymeric distributed feedback lasers with metallic contacts. Applied Physics Letters, 2004, 84(17): 3262–3264
Google Scholar
Marcus M, Milward J D, Köhler A, Barford W. Structural information for conjugated polymers from optical modeling. Journal of Physical Chemistry A, 2018, 122(14): 3621–3625
Google Scholar
Virgili T, Lidzey D G, Grell M, Bradley D D C, Stagira S, Zavelani-Rossi M, De Silvestri S. Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity. Applied Physics Letters, 2002, 80(22): 4088–4090
Google Scholar
Yang Y, Turnbull G A, Samuel I D W. Sensitive explosive vapor detection with polyfluorene lasers. Advanced Functional Materials, 2010, 20(13): 2093–2097
Google Scholar
Giovanella U, Betti P, Bolognesi A, Destri S, Melucci M, Pasini M, Porzio W, Botta C. Core-type polyfluorene-based copolymers for low-cost light-emitting technologies. Organic Electronics, 2010, 11(12): 2012–2018
Google Scholar
Yan M, Rothberg L J, Papadimitrakopoulos F, Galvin M E, Miller T M. Spatially indirect excitons as primary photoexcitations in conjugated polymers. Physical Review Letters, 1994, 72(7): 1104–1107
Google Scholar
Heliotis G, Bradley D D C, Turnbull G A, Samuel I D W. Light amplification and gain in polyfluorene waveguides. Applied Physics Letters, 2002, 81(3): 415–417
Google Scholar
Chang S J, Liu X, Lu T T, Liu Y Y, Pan J Q, Jiang Y, Chu S Q, Lai W Y, Huang W. Ladder-type poly(indenofluorene-co-benzothia-diazole)s as efficient gain media for organic lasers: design, synthesis, optical gain properties, and stabilized lasing properties. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(26): 6629–6639
Google Scholar
Lahoz F, Capuj N, Oton C J, Cheylan S. Optical gain in conjugated polymer hybrid structures based on porous silicon waveguides. Chemical Physics Letters, 2008, 463(4–6): 387–390
Google Scholar
Zhai T, Wang Y, Chen L, Wu X, Li S, Zhang X. Red-green-blue laser emission from cascaded polymer membranes. Nanoscale, 2015, 7(47): 19935–19939
Google Scholar
Sorokin P P, Lankard J R. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine. IBM Journal of Research and Development, 1966, 10(2): 162–163
Google Scholar
Czerney P, Graneß G, Birckner E, Vollmer F, Rettig W. Molecular engineering of cyanine-type fluorescent and laser dyes. Journal of Photochemistry and Photobiology A Chemistry, 1995, 89(1): 31–36
Google Scholar
Khairutdinov R F, Serpone N. Photophysics of cyanine dyes: subnanosecond relaxation dynamics in monomers, dimers, and H- and J-aggregates in solution. Journal of Physical Chemistry B, 1997, 101(14): 2602–2610
Google Scholar
Cerdán L, Costela A, Garcíamoreno I, Bañuelos J, Lópezarbeloa I. Singular laser behavior of hemicyanine dyes: unsurpassed efficiency and finely structured spectrum in the near-IR region. Laser Physics Letters, 2012, 9(6): 426–433
Google Scholar
Tomasulo M, Sortino S, White A J P, Raymo F M. Fast and stable photochromic oxazines. Journal of Organic Chemistry, 2005, 70(20): 8180–8189
Google Scholar
Shi X, Wang Y, Wang Z, Sun Y, Liu D, Zhang Y, Li Q, Shi J. High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires. Applied Physics Letters, 2013, 103(2): 023504
Google Scholar
Zhai T, Wang Y, Liu H, Zhang X. Large-scale fabrication of flexible metallic nanostructure pairs using interference ablation. Optics Express, 2015, 23(2): 1863–1870
Google Scholar
Jones G II, Jackson W, Halpern A. Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chemical Physics Letters, 1980, 72(2): 391–395
Google Scholar
Liu X, Cole J M, Waddell P G, Lin T C, Radia J, Zeidler A. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. Journal of Physical Chemistry A, 2012, 116(1): 727–737
Google Scholar
Wang Y, Shi X, Sun Y, Zheng R, Wei S, Shi J, Wang Z, Liu D. Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires. Optics Letters, 2014, 39(1): 5–8
Google Scholar
Wong M M, Schelly Z A. Solvent-jump relaxation kinetics of the association of Rhodamine type laser dyes. Journal of Physical Chemistry, 1974, 78(19): 1891–1895
Google Scholar
Zhai T, Zhou Y, Chen S, Wang Z, Shi J, Liu D, Zhang X. Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles. Physical Review A., 2010, 82(2): 023824
Google Scholar
Zhai T, Chen J, Chen L, Wang J, Wang L, Liu D, Li S, Liu H, Zhang X. A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale, 2015, 7(6): 2235–2240
Google Scholar
Kan S C, Vassilovski D, Wu T C, Lau K Y. Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers. Applied Physics Letters, 1993, 62(19): 2307–2309
Google Scholar
Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kop’ev P S, Alferov Z I, Richter U, Werner P, Gösele U, Heydenreich J. Low threshold, large T0 injection laser emission from (InGa)As quantum dots. Electronics Letters, 1994, 30(17): 1416–1417
Google Scholar
Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350–1353
Google Scholar
Yamashita K, Kitanobou A, Ito M, Fukuzawa E, Oe K. Solid-state organic laser using self-written active waveguide with in-line Fabry-Pérot cavity. Applied Physics Letters, 2008, 92(14): 143305
Google Scholar
Yamashita K, Yanagi H, Oe K. Array of a dye-doped polymer-based microlaser with multiwavelength emission. Optics Letters, 2011, 36(10): 1875–1877
Google Scholar
Lafargue C, Bittner S, Lozenko S, Lautru J, Zyss J, Ulysse C, Cluzel C, Lebental M. Three-dimensional emission from organic Fabry-Perot microlasers. Applied Physics Letters, 2013, 102(25): 251120
Google Scholar
Frolov S, Shkunov M, Vardeny Z, Yoshino K. Ring microlasers from conducting polymers. Physical Review B, 1997, 56(8): 4363–4366
Google Scholar
Frolov S V, Vardeny Z V, Yoshino K. Plastic microring lasers on fibers and wires. Applied Physics Letters, 1998, 72(15): 1802–1804
Google Scholar
Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y. Lasers: low-threshold whispering gallery mode lasing from self-assembled microspheres of single-sort conjugated polymers. Advanced Optical Materials, 2017, 5(10): 1700123
Google Scholar
Persano L, Camposeo A, Del Carro P, Mele E, Cingolani R, Pisignano D. Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14(5): 1951–1956
Google Scholar
Singer K D, Kazmierczak T, Lott J, Song H, Wu Y, Andrews J, Baer E, Hiltner A, Weder C. Melt-processed all-polymer distributed Bragg reflector laser. Optics Express, 2008, 16(14): 10358–10363
Google Scholar
Tsutsumi N, Ishibashi T. Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator. Optics Express, 2009, 17(24): 21698–21703
Google Scholar
Kretsch K P, Blau W J, Dumarcher V, Rocha L, Fiorini C, Nunzi J M, Pfeiffer S, Tillmann H, Hörhold H H. Distributed feedback laser action from polymeric waveguides doped with oligo phenylene vinylene model compounds. Applied Physics Letters, 2000, 76(16): 2149–2151
Google Scholar
Zhai T R, Zhang X P, Dou F. Microscopic excavation into the optically pumped polymer lasers based on distributed feedback. Chinese Physics Letters, 2012, 29(10): 104204
Google Scholar
Martins E R, Wang Y, Kanibolotsky A L, Skabara P J, Turnbull G A, Samuel I D. Low-threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Advanced Optical Materials, 2013, 1(8): 563–566
Google Scholar
Zhai T, Wu X, Li S, Liang S, Niu L, Wang M, Feng S, Liu H, Zhang X. Polymer lasing in a periodic-random compound cavity. Polymers, 2018, 10(11): 1194
Google Scholar
Zhang S, Tong J, Chen C, Cao F, Liang C, Song Y, Zhai T, Zhang X. Controlling the performance of polymer lasers via the cavity coupling. Polymers, 2019, 11(5): 764
Google Scholar
Heliotis G, Xia R, Turnbull G, Andrew P, Barnes W L, Samuel I D W, Bradley D D C. Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback. Advanced Functional Materials, 2004, 14(1): 91–97
Google Scholar
Cao H, Zhao Y, Ho S, Seelig E, Wang Q, Chang R. Random laser action in semiconductor powder. Physical Review Letters, 1999, 82(11): 2278–2281
Google Scholar
Wiersma D. The physics and applications of random lasers. Nature Physics, 2008, 4(5): 359–367
Google Scholar
Zhai T, Wang Y, Chen L, Zhang X. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate. Nanoscale, 2015, 7(29): 12312–12317
Google Scholar
Deotare P B, Mahony T S, Bulović V. Ultracompact low-threshold organic laser. ACS Nano, 2014, 8(11): 11080–11085
Google Scholar
Mahler L, Tredicucci A, Beltram F, Walther C, Faist J, Beere H E, Ritchie D A, Wiersma D S. Quasi-periodic distributed feedback laser. Nature Photonics, 2010, 4(3): 165–169
Google Scholar
Man W, Megens M, Steinhardt P J, Chaikin P M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature, 2005, 436(7053): 993–996
Google Scholar
Vardeny Z V, Nahata A, Agrawal A. Optics of photonic quasicrystals. Nature Photonics, 2013, 7(3): 177–187
Google Scholar
Zhai T, Cao F, Chu S, Gong Q, Zhang X. Continuously tunable distributed feedback polymer laser. Optics Express, 2018, 26(4): 4491–4497
Google Scholar
Barlow G, Shore K. Threshold gain and threshold current analysis of circular grating DFB organic semiconductor lasers. IEE Proceedings-Optoelectronics, 2001, 148(4): 165–170
Google Scholar
Bauer C, Giessen H, Schnabel B, Kley E B, Schmitt C, Scherf U, Mahrt R F. A surface-emitting circular grating polymer laser. Advanced Materials, 2001, 13(15): 1161–1164
Google Scholar
Stellinga D, Pietrzyk M E, Glackin J M E, Wang Y, Bansal A K, Turnbull G A, Dholakia K, Samuel I D W, Krauss T F. An organic vortex laser. ACS Nano, 2018, 12(3): 2389–2394
Google Scholar
Zhou P, Niu L, Hayat A, Cao F, Zhai T, Zhang X. Operating characteristics of high-order distributed feedback polymer lasers. Polymers, 2019, 11(2): 258
Google Scholar
Zhai T, Zhang X. Gain- and feedback-channel matching in lasers based on radiative-waveguide gratings. Applied Physics Letters, 2012, 101(14): 143507
Google Scholar
Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327–2335
Google Scholar
Kazarinov R F, Henry C H. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, 1985, 21(2): 144–150
Google Scholar
Scheuer J, Yariv A. Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators. IEEE Journal of Quantum Electronics, 2003, 39(12): 1555–1562
Google Scholar
Vannahme C, Smith C L C, Christiansen M B, Kristensen A. Emission wavelength of multilayer distributed feedback dye lasers. Applied Physics Letters, 2012, 101(15): 151123
Google Scholar
Huang W, Shen S, Pu D, Wei G, Ye Y, Peng C, Chen L. Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures. Journal of Physics D, 2015, 48(49): 495105
Google Scholar
Zhai T, Wu X, Wang M, Tong F, Li S, Ma Y, Deng J, Zhang X. Dual-wavelength polymer laser based on an active/inactive/active sandwich-like structure. Applied Physics Letters, 2016, 109(10): 101906
Google Scholar
Van Beijnum F, Van Veldhoven P J, Geluk E J, De Dood M J A, ’t Hooft G W, Van Exter M P. Surface plasmon lasing observed in metal hole arrays. Physical Review Letters, 2013, 110(20): 206802
Google Scholar
Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W, Lemmer U, Feldmann J, Scherf U, Müllen K, Gombert A, Wittwer V. A flexible conjugated polymer laser. Advanced Materials, 1998, 10(12): 920–923
Google Scholar
Wenger B, Tétreault N, Welland M, Friend R. Mechanically tunable conjugated polymer distributed feedback lasers. Applied Physics Letters, 2010, 97(19): 193303
Google Scholar
Zhai T, Chen L, Li S, Hu Y, Wang Y, Wang L, Zhang X. Freestanding membrane polymer laser on the end of an optical fiber. Applied Physics Letters, 2016, 108(4): 041904
Google Scholar
Chen C, Tong F, Cao F, Tong J, Zhai T, Zhang X. Tunable polymer lasers based on metal-dielectric hybrid cavity. Optics Express, 2018, 26(24): 32048–32054
Google Scholar
Cao F, Niu L, Tong J, Li S, Hayat A, Wang M, Zhai T, Zhang X. Hybrid lasing in a plasmonic cavity. Optics Express, 2018, 26(10): 13383–13389
Google Scholar
Zhai T, Tong F, Cao F, Niu L, Li S, Wang M, Zhang X. Distributed feedback lasing in a metallic cavity. Applied Physics Letters, 2017, 111(11): 111901
Google Scholar
Andrew P, Turnbull G A, Samuel I D, Barnes W L. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956
Google Scholar
Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8(7): 506–511
Google Scholar
Foucher C, Guilhabert B, Kanibolotsky A L, Skabara P J, Laurand N, Dawson M D. RGB and white-emitting organic lasers on flexible glass. Optics Express, 2016, 24(3): 2273–2280
Google Scholar
Wang Y, Tsiminis G, Kanibolotsky A L, Skabara P J, Samuel I D, Turnbull G A. Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators. Optics Express, 2013, 21(12): 14362–14367
Google Scholar
Whitworth G L, Zhang S, Stevenson J R Y, Ebenhoch B, Samuel I D W, Turnbull G A. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers. Applied Physics Letters, 2015, 107(16): 163301
Google Scholar
Gaal M, Gadermaier C, Plank H, Moderegger E, Pogantsch A, Leising G, List E J W. Imprinted conjugated polymer laser. Advanced Materials, 2003, 15(14): 1165–1167
Google Scholar
Liu X, Klinkhammer S, Wang Z, Wienhold T, Vannahme C, Jakobs P J, Bacher A, Muslija A, Mappes T, Lemmer U. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer. Optics Express, 2013, 21(23): 27697–27706
Google Scholar
Baldo M, Deutsch M, Burrows P, Gossenberger H, Gerstenberg M, Ban V, Forrest S. Organic vapor phase deposition. Advanced Materials, 1998, 10(18): 1505–1514
Google Scholar
Klinkhammer S, Liu X, Huska K, Shen Y, Vanderheiden S, Valouch S, Vannahme C, Bräse S, Mappes T, Lemmer U. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode. Optics Express, 2012, 20(6): 6357–6364
Google Scholar
Ge C, Lu M, Jian X, Tan Y, Cunningham B T. Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping. Optics Express, 2010, 18(12): 12980–12991
Google Scholar
Liu X, Klinkhammer S, Sudau K, Mechau N, Vannahme C, Kaschke J, Mappes T, Wegener M, Lemmer U. Ink-jet-printed organic semiconductor distributed feedback laser. Applied Physics Express, 2012, 5(7): 072101
Google Scholar
Parafiniuk K, Monnereau C, Sznitko L, Mettra B, Zelechowska M, Andraud C, Miniewicz A, Mysliwiec J. Distributed feedback lasing in amorphous polymers with covalently bonded fluorescent dyes: the influence of photoisomerization process. Macromolecules, 2017, 50(16): 6164–6173
Google Scholar
Karl M, Glackin J M E, Schubert M, Kronenberg N M, Turnbull G A, Samuel I D W, Gather M C. Flexible and ultra-lightweight polymer membrane lasers. Nature Communications, 2018, 9(1): 1525
Google Scholar
Namdas E, Tong M, Ledochowitsch P, Mednick S R, Yuen J D, Moses D, Heeger A J. Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers. Advanced Materials, 2009, 21(7): 799–802
Google Scholar
Pisignano D, Persano L, Visconti P, Cingolani R, Gigli G, Barbarella G, Favaretto L. Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2003, 83(13): 2545–2547
Google Scholar
Del Carro P, Camposeo A, Stabile R, Mele E, Persano L, Cingolani R, Pisignano D. Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89(20): 201105
Google Scholar
Chang J, Gwinner M, Caironi M, Sakanoue T, Sirringhaus H. Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography. Advanced Functional Materials, 2010, 20(17): 2825–2832
Google Scholar
Berger V, Gauthier-Lafaye O, Costard E. Photonic band gaps and holography. Journal of Applied Physics, 1997, 82(1): 60–64
Google Scholar
Yoshioka H, Yang Y, Watanabe H, Oki Y. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser. Optics Express, 2012, 20(4): 4690–4696
Google Scholar
Chen S, Zhou Y, Zhai T, Wang Z, Liu D. Different emission properties of a band edge laser pumped by picosecond and nanosecond pulses. Laser Physics Letters, 2012, 9(8): 570–574
Google Scholar
Stroisch M, Woggon T, Lemmer U, Bastian G, Violakis G, Pissadakis S. Organic semiconductor distributed feedback laser fabricated by direct laser interference ablation. Optics Express, 2007, 15(7): 3968–3973
Google Scholar
Zhai T, Zhang X, Pang Z, Dou F. Direct writing of polymer lasers using interference ablation. Advanced Materials, 2011, 23(16): 1860–1864
Google Scholar
Zhang X, Liu H, Li H, Zhai T. Direct nanopatterning into conjugated polymers using interference crosslinking. Macromolecular Chemistry and Physics, 2012, 213(12): 1285–1290
Google Scholar
Zhai T, Lin Y, Liu H, Feng S, Zhang X. Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures. Optics Express, 2013, 21(21): 24490–24496
Google Scholar
Scott B, Wirnsberger G, McGehee M, Chmelka B, Stucky G. Dyedoped mesostructured silica as a distributed feedback laser fabricated by soft lithography. Advanced Materials, 2001, 13(16): 1231–1234
Google Scholar
Ge C, Lu M, Tan Y, Cunningham B T. Enhancement of pump efficiency of a visible wavelength organic distributed feedback laser by resonant optical pumping. Optics Express, 2011, 19(6): 5086–5092
Google Scholar
Lawrence J, Turnbull G, Samuel I. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025
Google Scholar
Salerno M, Gigli G, Zavelani-Rossi M, Perissinotto S, Lanzani G. Effects of morphology and optical contrast in organic distributed feedback lasers. Applied Physics Letters, 2007, 90(11): 111110
Google Scholar
Yamashita K, Takeuchi N, Oe K, Yanagi H. Simultaneous RGB lasing from a single-chip polymer device. Optics Letters, 2010, 35(14): 2451–2453
Google Scholar
Kuehne A J C, Gather M C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chemical Reviews, 2016, 116(21): 12823–12864
Google Scholar
Samuel I D, Turnbull G A. Organic semiconductor lasers. Chemical Reviews, 2007, 107(4): 1272–1295
Google Scholar
Grivas C, Pollnau M. Organic solid-state integrated amplifiers and lasers. Laser & Photonics Reviews, 2012, 6(4): 419–462
Google Scholar
Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L. Blue, surface-emitting, distributed feedback polyfluorene lasers. Applied Physics Letters, 2003, 83(11): 2118–2120
Google Scholar
Jung H, Han C, Kim H, Cho K S, Roh Y G, Park Y, Jeon H. Tunable colloidal quantum dot distributed feedback lasers integrated on a continuously chirped surface grating. Nanoscale, 2018, 10(48): 22745–22749
Google Scholar
Zhai T, Wu X, Tong F, Li S, Wang M, Zhang X. Multi-wavelength lasing in a beat structure. Applied Physics Letters, 2016, 109(26): 261906
Google Scholar
Karnutsch C, Pflumm C, Heliotis G, deMello J C, Bradley D D C, Wang J, Weimann T, Haug V, Gärtner C, Lemmer U. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Applied Physics Letters, 2007, 90(13): 131104
Google Scholar
Karnutsch C, Gýrtner C, Haug V, Lemmer U, Farrell T, Nehls B S, Scherf U, Wang J, Weimann T, Heliotis G, Pflumm C, deMello J C, Bradley D D C. Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Applied Physics Letters, 2006, 89(20): 201108
Google Scholar
Zhai T, Tong F, Wang Y, Wu X, Li S, Wang M, Zhang X. Polymer lasers assembled by suspending membranes on a distributed feedback grating. Optics Express, 2016, 24(19): 22028–22033
Google Scholar
Notomi M, Suzuki H, Tamamura T, Edagawa K. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Physical Review Letters, 2004, 92(12): 123906
Google Scholar
Turnbull G, Andrew P, Barnes W, Samuel I. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Applied Physics Letters, 2003, 82(3): 313–315
Google Scholar
Harwell J R, Whitworth G L, Turnbull G A, Samuel I D W. Green perovskite distributed feedback lasers. Scientific Reports, 2017, 7(1): 11727
Google Scholar
Prins F, Kim D K, Cui J, De Leo E, Spiegel L L, McPeak K M, Norris D J. Direct patterning of colloidal quantum-dot thin films for enhanced and spectrally selective out-coupling of emission. Nano Letters, 2017, 17(3): 1319–1325
Google Scholar
Cao W, Muñoz A, Palffy-Muhoray P, Taheri B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nature Materials, 2002, 1(2): 111–113
Google Scholar
Yoshino K, Tatsuhara S, Kawagishi Y, Ozaki M, Zakhidov A A, Vardeny Z V. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals. Applied Physics Letters, 1999, 74(18): 2590–2592
Google Scholar
Shkunov M, Vardeny Z, DeLong M, Polson R, Zakhidov A, Baughman R. Tunable, gap-state lasing in switchable directions for opal photonic crystals. Advanced Functional Materials, 2002, 12(1): 21–26
Google Scholar
Kok M H, Lu W, Tam W Y, Wong G K. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions. Optics Express, 2009, 17(9): 7275–7284
Google Scholar
Hirayama H, Hamano T, Aoyagi Y. Novel surface emitting laser diode using photonic band-gap crystal cavity. Applied Physics Letters, 1996, 69(6): 791–793
Google Scholar
Yang Y, Turnbull G A, Samuel I D W. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Applied Physics Letters, 2008, 92(16): 163306
Google Scholar
Riedl T, Rabe T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P, Nehls B, Farrell T, Scherf U. Tunable organic thin-film laser pumped by an inorganic violet diode laser. Applied Physics Letters, 2006, 88(24): 241116
Google Scholar
Heydari E, Buller J, Wischerhoff E, Laschewsky A, Döring S, Stumpe J. Label-free biosensor based on an all — polymer DFB laser. Advanced Optical Materials, 2014, 2(2): 137–141
Google Scholar
Haughey A M, Guilhabert B, Kanibolotsky A L, Skabara P J, Dawson M D, Burley G A, Laurand N. An oligofluorene truxene based distributed feedback laser for biosensing applications. Biosensors & Bioelectronics, 2014, 54: 679–686
Google Scholar
Cao F, Zhang S, Tong J, Chen C, Niu L, Zhai T, Zhang X. Effects of cavity structure on tuning properties of polymer lasers in a liquid environment. Polymers, 2019, 11(2): 329
Google Scholar
Schneider D, Rabe T, Riedl T, Dobbertin T, Kröger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P, Gerhard A, Stössel P, Vestweber H. An ultraviolet organic thin-film solid-state laser for biomarker applications. Advanced Materials, 2005, 17(1): 31–34
Google Scholar
Retolaza A, Martinez-Perdiguero J, Merino S, Morales-Vidal M, Boj P G, Quintana J A, Villalvilla J M, Díaz-García M A. Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker. Sensors and Actuators B, Chemical, 2016, 223: 261–265
Google Scholar
Oki Y, Miyamoto S, Maeda M, Vasa N J. Multiwavelength distributed-feedback dye laser array and its application to spectroscopy. Optics Letters, 2002, 27(14): 1220–1222
Google Scholar
Voss T, Scheel D, Schade W. A microchip-laser-pumped DFB-polymer-dye laser. Applied Physics B, Lasers and Optics, 2001, 73(2): 105–109
Google Scholar
Christiansen M B, Schøler M, Kristensen A. Integration of active and passive polymer optics. Optics Express, 2007, 15(7): 3931–3939
Google Scholar
Vannahme C, Klinkhammer S, Lemmer U, Mappes T. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Optics Express, 2011, 19(9): 8179–8186
Google Scholar
Toussaere E, Bouadma N, Zyss J. Monolithic integrated four DFB lasers array with a polymer-based combiner for WDM applications. Optical Materials, 1998, 9(1–4): 255–258
Google Scholar
Ma H, Jen Y, Dalton L R. Polymer-based optical waveguides: materials, processing, and devices. Advanced Materials, 2002, 14(19): 1339–1365
Google Scholar