Distributed feedback organic lasing in photonic crystals

Abstract

Considerable research efforts have been devoted to the investigation of distributed feedback (DFB) organic lasing in photonic crystals in recent decades. It is still a big challenge to realize DFB lasing in complex photonic crystals. This review discusses the recent progress on the DFB organic laser based on one-, two-, and three-dimensional photonic crystals. The photophysics of gain materials and the fabrication of laser cavities are also introduced. At last, future development trends of the lasers are prospected.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062

    Article  Google Scholar 

  2. 2.

    John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489

    Article  Google Scholar 

  3. 3.

    Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals: putting a new twist on light. Nature, 1997, 386(6621): 143–149

    Google Scholar 

  4. 4.

    Sakoda K. Optical Properties of Photonic Crystals. New York: Springer, 2001

    Google Scholar 

  5. 5.

    Zhai T, Liu D, Zhang X. Photonic crystals and microlasers fabricated with low refractive index material. Frontiers in Physics, 2010, 5(3): 266–276

    Google Scholar 

  6. 6.

    Krauss T F, Rue R, Brand S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature, 1996, 383(6602): 699–702

    Google Scholar 

  7. 7.

    Zoorob M E, Charlton M D, Parker G J, Baumberg J J, Netti M C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature, 2000, 404(6779): 740–743

    Google Scholar 

  8. 8.

    Campbell M, Sharp D N, Harrison M T, Denning R G, Turberfield A J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404(6773): 53–56

    Google Scholar 

  9. 9.

    Bendickson J M, Dowling J P, Scalora M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Physical Review E, 1996, 53(4): 4107–4121

    Google Scholar 

  10. 10.

    Boedecker G, Henkel C. All-frequency effective medium theory of a photonic crystal. Optics Express, 2003, 11(13): 1590–1595

    Google Scholar 

  11. 11.

    Wang Z, Zhai T, Lin J, Liu D. Effect of surface truncation on mode density in photonic crystals. Journal of the Optical Society of America B, Optical Physics, 2007, 24(9): 2416–2420

    Google Scholar 

  12. 12.

    Dowling J, Scalora M, Bloemer M, Bowden C. The photonic band edge laser: a new approach to gain enhancement. Journal of Applied Physics, 1994, 75(4): 1896–1899

    Google Scholar 

  13. 13.

    Cho C O, Jeong J, Lee J, Jeon H, Kim I, Jang D H, Park Y S, Woo J C. Photonic crystal band edge laser array with a holographically generated square-lattice pattern. Applied Physics Letters, 2005, 87(16): 161102

    Google Scholar 

  14. 14.

    Kim H, Lee M, Jeong H, Hwang M S, Kim H R, Park S, Park Y D, Lee T, Park H G, Jeon H. Electrical modulation of a photonic crystal band-edge laser with a graphene monolayer. Nanoscale, 2018, 10(18): 8496–8502

    Google Scholar 

  15. 15.

    Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189

    Google Scholar 

  16. 16.

    Bose R, Sridharan D, Kim H, Solomon G S, Waks E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Physical Review Letters, 2012, 108(22): 227402

    Google Scholar 

  17. 17.

    Nozaki K, Shinya A, Matsuo S, Sato T, Kuramochi E, Notomi M. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Optics Express, 2013, 21(10): 11877–11888

    Google Scholar 

  18. 18.

    Liu Q, Ouyang Z, Wu C J, Liu C P, Wang J C. All-optical half adder based on cross structures in two-dimensional photonic crystals. Optics Express, 2008, 16(23): 18992–19000

    Google Scholar 

  19. 19.

    McCutcheon M W, Rieger G W, Young J F, Dalacu D, Poole P J, Williams R L. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Applied Physics Letters, 2009, 95(22): 221102

    Google Scholar 

  20. 20.

    Fu Y, Hu X, Gong Q. Silicon photonic crystal all-optical logic gates. Physics Letters A, 2013, 377(3–4): 329–333

    Google Scholar 

  21. 21.

    Rupasov V I V I, Singh M. Quantum gap solitons and many-polariton-atom bound states in dispersive medium and photonic band gap. Physical Review Letters, 1996, 77(2): 338–341

    Google Scholar 

  22. 22.

    Xie P, Zhang Z Q. Multifrequency gap solitons in nonlinear photonic crystals. Physical Review Letters, 2003, 91(21): 213904

    Google Scholar 

  23. 23.

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N. Conical diffraction and gap solitons in honeycomb photonic lattices. Physical Review Letters, 2007, 98(10): 103901

    Google Scholar 

  24. 24.

    Wu J, Day D, Gu M. A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Applied Physics Letters, 2008, 92(7): 071108

    Google Scholar 

  25. 25.

    Kang C, Phare C T, Vlasov Y A, Assefa S, Weiss S M. Photonic crystal slab sensor with enhanced surface area. Optics Express, 2010, 18(26): 27930–27937

    Google Scholar 

  26. 26.

    Sørensen K T, Ingvorsen C B, Nielsen L H, Kristensen A. Effects of water-absorption and thermal drift on a polymeric photonic crystal slab sensor. Optics Express, 2018, 26(5): 5416–5422

    Google Scholar 

  27. 27.

    Painter O, Lee R K, Scherer A, Yariv A, O’Brien J D, Dapkus P D, Kim I. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819–1821

    Google Scholar 

  28. 28.

    Park H G, Kim S H, Kwon S H, Ju Y G, Yang J K, Baek J H, Kim S B, Lee Y H. Electrically driven single-cell photonic crystal laser. Science, 2004, 305(5689): 1444–1447

    Google Scholar 

  29. 29.

    Yang X, Wong C W. Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers. Optics Express, 2007, 15(8): 4763–4780

    Google Scholar 

  30. 30.

    Ryu H Y, Kwon S H, Lee Y J, Lee Y H, Kim F. Very low threshold photonic band edge lasers from free standing trlangular photonic crystal slabs. Applied Physics Letters, 2002, 80(19): 3476–3478

    Google Scholar 

  31. 31.

    Arango F B, Christiansen M B, Gersborg-Hansen M, Kristensen A. Optofluidic tuning of photonic crystal band edge lasers. Applied Physics Letters, 2007, 91(22): 223503

    Google Scholar 

  32. 32.

    Jung H, Lee M, Han C, Park Y, Cho K S, Jeon H. Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide. Optics Express, 2017, 25(26): 32919

    Google Scholar 

  33. 33.

    Monat C, Seassal C, Letartre X, Regreny P, Rojo-Romeo P, Viktorovitch P, Le Vassor d’Yerville M, Cassagne D, Albert J P, Jalaguier E, Pocas S, Aspar B. InP-based two-dimensional photonic crystal on silicon: in-plane Bloch mode laser. Applied Physics Letters, 2002, 81(27): 5102–5104

    Google Scholar 

  34. 34.

    Imada M, Noda S, Chutinan A, Tokuda T, Murata M, Sasaki G. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Applied Physics Letters, 1999, 75(3): 316–318

    Google Scholar 

  35. 35.

    Kok M, Lu W, Lee J, Tam W, Wong G, Chan C. Lasing from dyedoped photonic crystals with graded layers in dichromate gelatin emulsions. Applied Physics Letters, 2008, 92(15): 151108

    Google Scholar 

  36. 36.

    Meier M, Mekis A, Dodabalapur A, Timko A, Slusher R E, Joannopoulos J D, Nalamasu O. Laser action from two-dimensional distributed feedback in photonic crystals. Applied Physics Letters, 1999, 74(1): 7–9

    Google Scholar 

  37. 37.

    Riechel S, Kallinger C, Lemmer U, Feldmann J, Gombert A, Wittwer V, Scherf U. A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Applied Physics Letters, 2000, 77(15): 2310–2312

    Google Scholar 

  38. 38.

    Notomi M, Suzuki H, Tamamura T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Applied Physics Letters, 2001, 78(10): 1325–1327

    Google Scholar 

  39. 39.

    Turnbull G, Andrew P, Jory M, Barnes W L, Samuel I. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Physical Review B, 2001, 64(12): 125122

    Google Scholar 

  40. 40.

    Andrew P, Turnbull G, Samuel I, Barnes W. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956

    Google Scholar 

  41. 41.

    Turnbull G, Andrew P, Barnes W L, Samuel I. Photonic mode dispersion of a two-dimensional distributed feedback polymer laser. Physical Review B, 2003, 67(16): 165107

    Google Scholar 

  42. 42.

    Samuel I D, Turnbull G A. Polymer lasers: recent advances. Materials Today, 2004, 7(9): 28–35

    Google Scholar 

  43. 43.

    Herrnsdorf J, Guilhabert B, Chen Y, Kanibolotsky A, Mackintosh A, Pethrick R, Skabara P, Gu E, Laurand N, Dawson M. Flexible blue-emitting encapsulated organic semiconductor DFB laser. Optics Express, 2010, 18(25): 25535–25545

    Google Scholar 

  44. 44.

    Zhai T, Zhang X, Pang Z. Polymer laser based on active waveguide grating structures. Optics Express, 2011, 19(7): 6487–6492

    Google Scholar 

  45. 45.

    Vecchi G, Raineri F, Sagnes I, Yacomotti A, Monnier P, Karle T J, Lee K H, Braive R, Le Gratiet L, Guilet S, Beaudoin G, Taneau A, Bouchoule S, Levenson A, Raj R. Continuous-wave operation of photonic band-edge laser near 1.55 µm on silicon wafer. Optics Express, 2007, 15(12): 7551–7556

    Google Scholar 

  46. 46.

    Van der Ziel J P, Tsang W T, Logan R A, Mikulyak R M, Augustyniak W M. Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers. Applied Physics Letters, 1981, 39(7): 525–527

    Google Scholar 

  47. 47.

    Dahmani B, Hollberg L, Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback. Optics Letters, 1987, 12(11): 876–878

    Google Scholar 

  48. 48.

    San Miguel M, Feng Q, Moloney J V. Light-polarization dynamics in surface-emitting semiconductor lasers. Physical Review A, 1995, 52(2): 1728–1739

    Google Scholar 

  49. 49.

    Shank C V. Physics of dye lasers. Reviews of Modern Physics, 1975, 47(3): 649–657

    Google Scholar 

  50. 50.

    Ledentsov N N, Ustinov V M, Egorov A Y, Zhukov A E, Maksimov M V, Tabatadze I G, Kop’ev P S. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors, 1994, 28(8): 832–834

    Google Scholar 

  51. 51.

    Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Y, Zhukov A E, Maximov M V, Kop’ev P S, Alferov Z I. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied Physics Letters, 1996, 69(9): 1226–1228

    Google Scholar 

  52. 52.

    Bimberg D, Grundmann M, Heinrichsdorff F, Ledentsov N N, Ustinov V M, Zhukov A E, Kovsh A R, Maximov M V, Shernyakov Y M, Volovik B V, Tsatsul’nikov A F, Kop’ev P S, Alferov Z I. Quantum dot lasers: breakthrough in optoelectronics. Thin Solid Films, 2000, 367(1–2): 235–249

    Google Scholar 

  53. 53.

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834

    Google Scholar 

  54. 54.

    Wang K, Wang S, Xiao S, Song Q. Recent advances in perovskite micro- and nanolasers. Advanced Optical Materials, 2018, 6(18): 1800278

    Google Scholar 

  55. 55.

    Wei Q, Li X, Liang C, Zhang Z, Guo J, Hong G, Xing G, Huang W. Recent progress in metal halide perovskite micro- and nanolasers. Advanced Optical Materials, 2019, 7(20): 1900080

    Google Scholar 

  56. 56.

    Zhang W F, Zhu H, Yu S F, Yang H Y. Observation of lasing emission from carbon nanodots in organic solvents. Advanced Materials, 2012, 24(17): 2263–2267

    Google Scholar 

  57. 57.

    Qu S, Liu X, Guo X, Chu M, Zhang L, Shen D. Amplified spontaneous green emission and lasing emission from carbon nanoparticles. Advanced Functional Materials, 2014, 24(18): 2689–2695

    Google Scholar 

  58. 58.

    Tang C W, Vanslyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915

    Google Scholar 

  59. 59.

    Schön J H, Kloc C, Dodabalapur A, Batlogg B. An organic solid state injection laser. Science, 2000, 289(5479): 599–601

    Google Scholar 

  60. 60.

    Montes V A, Li G, Pohl R, Shinar J, Anzenbacher P. Effective color tuning in organic light-emitting diodes based on aluminum Tris(5-aryl-8-hydroxyquinoline) complexes. Advanced Materials, 2004, 16(22): 2001–2003

    Google Scholar 

  61. 61.

    Lawrence J R, Turnbull G A, Samuel I D, Richards G J, Burn P L. Optical amplification in a first-generation dendritic organic semiconductor. Optics Letters, 2004, 29(8): 869–871

    Google Scholar 

  62. 62.

    Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J, Rabe T, Riedl T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P. Organic solid-state ultraviolet-laser based on spiro-terphenyl. Applied Physics Letters, 2005, 87(16): 161103

    Google Scholar 

  63. 63.

    Xia R, Lai W Y, Levermore P A, Huang W, Bradley D D C. Low-threshold distributed-feedback lasers based on Pyrene-cored starburst molecules with 1,3,6,8-attached Oligo(9,9-Dialkylfluorene) arms. Advanced Functional Materials, 2009, 19(17): 2844–2850

    Google Scholar 

  64. 64.

    Tessler N, Denton G, Friend R. Lasing from conjugated-polymer microcavities. Nature, 1996, 382(6593): 695–697

    Google Scholar 

  65. 65.

    Campoy-Quiles M, Heliotis G, Xia R, Ariu M, Pintani M, Etchegoin P, Bradley D D C. Ellipsometric characterization of the optical constants of polyfluorene gain media. Advanced Functional Materials, 2005, 15(6): 925–933

    Google Scholar 

  66. 66.

    Yap B K, Xia R, Campoy-Quiles M, Stavrinou P N, Bradley D D C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nature Materials, 2008, 7(5): 376–380

    Google Scholar 

  67. 67.

    Lawrence J R, Turnbull G A, Samuel I D W. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025

    Google Scholar 

  68. 68.

    Goossens M, Ruseckas A, Turnbull G A, Samuel I D W. Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Applied Physics Letters, 2004, 85(1): 31–33

    Google Scholar 

  69. 69.

    O’Neill M, Kelly S M. Ordered materials for organic electronics and photonics. Advanced Materials, 2011, 23(5): 566–584

    Google Scholar 

  70. 70.

    Stehr J, Crewett J, Schindler F, Sperling R, von Plessen G, Lemmer U, Lupton J M, Klar T A, Feldmann J, Holleitner A W, Forster M, Scherf U. A low threshold polymer laser based on metallic nanoparticle gratings. Advanced Materials, 2003, 15(20): 1726–1729

    Google Scholar 

  71. 71.

    Reufer M, Riechel S, Lupton J, Feldmann J, Lemmer U, Schneider D, Benstem T, Dobbertin T, Kowalsky W, Gombert A, Forberich K, Wittwer V, Scherf U. Low-threshold polymeric distributed feedback lasers with metallic contacts. Applied Physics Letters, 2004, 84(17): 3262–3264

    Google Scholar 

  72. 72.

    Marcus M, Milward J D, Köhler A, Barford W. Structural information for conjugated polymers from optical modeling. Journal of Physical Chemistry A, 2018, 122(14): 3621–3625

    Google Scholar 

  73. 73.

    Virgili T, Lidzey D G, Grell M, Bradley D D C, Stagira S, Zavelani-Rossi M, De Silvestri S. Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity. Applied Physics Letters, 2002, 80(22): 4088–4090

    Google Scholar 

  74. 74.

    Yang Y, Turnbull G A, Samuel I D W. Sensitive explosive vapor detection with polyfluorene lasers. Advanced Functional Materials, 2010, 20(13): 2093–2097

    Google Scholar 

  75. 75.

    Giovanella U, Betti P, Bolognesi A, Destri S, Melucci M, Pasini M, Porzio W, Botta C. Core-type polyfluorene-based copolymers for low-cost light-emitting technologies. Organic Electronics, 2010, 11(12): 2012–2018

    Google Scholar 

  76. 76.

    Yan M, Rothberg L J, Papadimitrakopoulos F, Galvin M E, Miller T M. Spatially indirect excitons as primary photoexcitations in conjugated polymers. Physical Review Letters, 1994, 72(7): 1104–1107

    Google Scholar 

  77. 77.

    Heliotis G, Bradley D D C, Turnbull G A, Samuel I D W. Light amplification and gain in polyfluorene waveguides. Applied Physics Letters, 2002, 81(3): 415–417

    Google Scholar 

  78. 78.

    Chang S J, Liu X, Lu T T, Liu Y Y, Pan J Q, Jiang Y, Chu S Q, Lai W Y, Huang W. Ladder-type poly(indenofluorene-co-benzothia-diazole)s as efficient gain media for organic lasers: design, synthesis, optical gain properties, and stabilized lasing properties. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(26): 6629–6639

    Google Scholar 

  79. 79.

    Lahoz F, Capuj N, Oton C J, Cheylan S. Optical gain in conjugated polymer hybrid structures based on porous silicon waveguides. Chemical Physics Letters, 2008, 463(4–6): 387–390

    Google Scholar 

  80. 80.

    Zhai T, Wang Y, Chen L, Wu X, Li S, Zhang X. Red-green-blue laser emission from cascaded polymer membranes. Nanoscale, 2015, 7(47): 19935–19939

    Google Scholar 

  81. 81.

    Sorokin P P, Lankard J R. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine. IBM Journal of Research and Development, 1966, 10(2): 162–163

    Google Scholar 

  82. 82.

    Czerney P, Graneß G, Birckner E, Vollmer F, Rettig W. Molecular engineering of cyanine-type fluorescent and laser dyes. Journal of Photochemistry and Photobiology A Chemistry, 1995, 89(1): 31–36

    Google Scholar 

  83. 83.

    Khairutdinov R F, Serpone N. Photophysics of cyanine dyes: subnanosecond relaxation dynamics in monomers, dimers, and H- and J-aggregates in solution. Journal of Physical Chemistry B, 1997, 101(14): 2602–2610

    Google Scholar 

  84. 84.

    Cerdán L, Costela A, Garcíamoreno I, Bañuelos J, Lópezarbeloa I. Singular laser behavior of hemicyanine dyes: unsurpassed efficiency and finely structured spectrum in the near-IR region. Laser Physics Letters, 2012, 9(6): 426–433

    Google Scholar 

  85. 85.

    Tomasulo M, Sortino S, White A J P, Raymo F M. Fast and stable photochromic oxazines. Journal of Organic Chemistry, 2005, 70(20): 8180–8189

    Google Scholar 

  86. 86.

    Shi X, Wang Y, Wang Z, Sun Y, Liu D, Zhang Y, Li Q, Shi J. High performance plasmonic random laser based on nanogaps in bimetallic porous nanowires. Applied Physics Letters, 2013, 103(2): 023504

    Google Scholar 

  87. 87.

    Zhai T, Wang Y, Liu H, Zhang X. Large-scale fabrication of flexible metallic nanostructure pairs using interference ablation. Optics Express, 2015, 23(2): 1863–1870

    Google Scholar 

  88. 88.

    Jones G II, Jackson W, Halpern A. Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chemical Physics Letters, 1980, 72(2): 391–395

    Google Scholar 

  89. 89.

    Liu X, Cole J M, Waddell P G, Lin T C, Radia J, Zeidler A. Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. Journal of Physical Chemistry A, 2012, 116(1): 727–737

    Google Scholar 

  90. 90.

    Wang Y, Shi X, Sun Y, Zheng R, Wei S, Shi J, Wang Z, Liu D. Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires. Optics Letters, 2014, 39(1): 5–8

    Google Scholar 

  91. 91.

    Wong M M, Schelly Z A. Solvent-jump relaxation kinetics of the association of Rhodamine type laser dyes. Journal of Physical Chemistry, 1974, 78(19): 1891–1895

    Google Scholar 

  92. 92.

    Zhai T, Zhou Y, Chen S, Wang Z, Shi J, Liu D, Zhang X. Pulse-duration-dependent and temperature-tunable random lasing in a weakly scattering structure formed by speckles. Physical Review A., 2010, 82(2): 023824

    Google Scholar 

  93. 93.

    Zhai T, Chen J, Chen L, Wang J, Wang L, Liu D, Li S, Liu H, Zhang X. A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale, 2015, 7(6): 2235–2240

    Google Scholar 

  94. 94.

    Kan S C, Vassilovski D, Wu T C, Lau K Y. Quantum capture limited modulation bandwidth of quantum well, wire, and dot lasers. Applied Physics Letters, 1993, 62(19): 2307–2309

    Google Scholar 

  95. 95.

    Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kop’ev P S, Alferov Z I, Richter U, Werner P, Gösele U, Heydenreich J. Low threshold, large T0 injection laser emission from (InGa)As quantum dots. Electronics Letters, 1994, 30(17): 1416–1417

    Google Scholar 

  96. 96.

    Fafard S, Hinzer K, Raymond S, Dion M, McCaffrey J, Feng Y, Charbonneau S. Red-emitting semiconductor quantum dot lasers. Science, 1996, 274(5291): 1350–1353

    Google Scholar 

  97. 97.

    Yamashita K, Kitanobou A, Ito M, Fukuzawa E, Oe K. Solid-state organic laser using self-written active waveguide with in-line Fabry-Pérot cavity. Applied Physics Letters, 2008, 92(14): 143305

    Google Scholar 

  98. 98.

    Yamashita K, Yanagi H, Oe K. Array of a dye-doped polymer-based microlaser with multiwavelength emission. Optics Letters, 2011, 36(10): 1875–1877

    Google Scholar 

  99. 99.

    Lafargue C, Bittner S, Lozenko S, Lautru J, Zyss J, Ulysse C, Cluzel C, Lebental M. Three-dimensional emission from organic Fabry-Perot microlasers. Applied Physics Letters, 2013, 102(25): 251120

    Google Scholar 

  100. 100.

    Frolov S, Shkunov M, Vardeny Z, Yoshino K. Ring microlasers from conducting polymers. Physical Review B, 1997, 56(8): 4363–4366

    Google Scholar 

  101. 101.

    Frolov S V, Vardeny Z V, Yoshino K. Plastic microring lasers on fibers and wires. Applied Physics Letters, 1998, 72(15): 1802–1804

    Google Scholar 

  102. 102.

    Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y. Lasers: low-threshold whispering gallery mode lasing from self-assembled microspheres of single-sort conjugated polymers. Advanced Optical Materials, 2017, 5(10): 1700123

    Google Scholar 

  103. 103.

    Persano L, Camposeo A, Del Carro P, Mele E, Cingolani R, Pisignano D. Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14(5): 1951–1956

    Google Scholar 

  104. 104.

    Singer K D, Kazmierczak T, Lott J, Song H, Wu Y, Andrews J, Baer E, Hiltner A, Weder C. Melt-processed all-polymer distributed Bragg reflector laser. Optics Express, 2008, 16(14): 10358–10363

    Google Scholar 

  105. 105.

    Tsutsumi N, Ishibashi T. Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator. Optics Express, 2009, 17(24): 21698–21703

    Google Scholar 

  106. 106.

    Kretsch K P, Blau W J, Dumarcher V, Rocha L, Fiorini C, Nunzi J M, Pfeiffer S, Tillmann H, Hörhold H H. Distributed feedback laser action from polymeric waveguides doped with oligo phenylene vinylene model compounds. Applied Physics Letters, 2000, 76(16): 2149–2151

    Google Scholar 

  107. 107.

    Zhai T R, Zhang X P, Dou F. Microscopic excavation into the optically pumped polymer lasers based on distributed feedback. Chinese Physics Letters, 2012, 29(10): 104204

    Google Scholar 

  108. 108.

    Martins E R, Wang Y, Kanibolotsky A L, Skabara P J, Turnbull G A, Samuel I D. Low-threshold nanoimprinted lasers using substructured gratings for control of distributed feedback. Advanced Optical Materials, 2013, 1(8): 563–566

    Google Scholar 

  109. 109.

    Zhai T, Wu X, Li S, Liang S, Niu L, Wang M, Feng S, Liu H, Zhang X. Polymer lasing in a periodic-random compound cavity. Polymers, 2018, 10(11): 1194

    Google Scholar 

  110. 110.

    Zhang S, Tong J, Chen C, Cao F, Liang C, Song Y, Zhai T, Zhang X. Controlling the performance of polymer lasers via the cavity coupling. Polymers, 2019, 11(5): 764

    Google Scholar 

  111. 111.

    Heliotis G, Xia R, Turnbull G, Andrew P, Barnes W L, Samuel I D W, Bradley D D C. Emission characteristics and performance comparison of polyfluorene lasers with one-and two-dimensional distributed feedback. Advanced Functional Materials, 2004, 14(1): 91–97

    Google Scholar 

  112. 112.

    Cao H, Zhao Y, Ho S, Seelig E, Wang Q, Chang R. Random laser action in semiconductor powder. Physical Review Letters, 1999, 82(11): 2278–2281

    Google Scholar 

  113. 113.

    Wiersma D. The physics and applications of random lasers. Nature Physics, 2008, 4(5): 359–367

    Google Scholar 

  114. 114.

    Zhai T, Wang Y, Chen L, Zhang X. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate. Nanoscale, 2015, 7(29): 12312–12317

    Google Scholar 

  115. 115.

    Deotare P B, Mahony T S, Bulović V. Ultracompact low-threshold organic laser. ACS Nano, 2014, 8(11): 11080–11085

    Google Scholar 

  116. 116.

    Mahler L, Tredicucci A, Beltram F, Walther C, Faist J, Beere H E, Ritchie D A, Wiersma D S. Quasi-periodic distributed feedback laser. Nature Photonics, 2010, 4(3): 165–169

    Google Scholar 

  117. 117.

    Man W, Megens M, Steinhardt P J, Chaikin P M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature, 2005, 436(7053): 993–996

    Google Scholar 

  118. 118.

    Vardeny Z V, Nahata A, Agrawal A. Optics of photonic quasicrystals. Nature Photonics, 2013, 7(3): 177–187

    Google Scholar 

  119. 119.

    Zhai T, Cao F, Chu S, Gong Q, Zhang X. Continuously tunable distributed feedback polymer laser. Optics Express, 2018, 26(4): 4491–4497

    Google Scholar 

  120. 120.

    Barlow G, Shore K. Threshold gain and threshold current analysis of circular grating DFB organic semiconductor lasers. IEE Proceedings-Optoelectronics, 2001, 148(4): 165–170

    Google Scholar 

  121. 121.

    Bauer C, Giessen H, Schnabel B, Kley E B, Schmitt C, Scherf U, Mahrt R F. A surface-emitting circular grating polymer laser. Advanced Materials, 2001, 13(15): 1161–1164

    Google Scholar 

  122. 122.

    Stellinga D, Pietrzyk M E, Glackin J M E, Wang Y, Bansal A K, Turnbull G A, Dholakia K, Samuel I D W, Krauss T F. An organic vortex laser. ACS Nano, 2018, 12(3): 2389–2394

    Google Scholar 

  123. 123.

    Zhou P, Niu L, Hayat A, Cao F, Zhai T, Zhang X. Operating characteristics of high-order distributed feedback polymer lasers. Polymers, 2019, 11(2): 258

    Google Scholar 

  124. 124.

    Zhai T, Zhang X. Gain- and feedback-channel matching in lasers based on radiative-waveguide gratings. Applied Physics Letters, 2012, 101(14): 143507

    Google Scholar 

  125. 125.

    Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327–2335

    Google Scholar 

  126. 126.

    Kazarinov R F, Henry C H. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, 1985, 21(2): 144–150

    Google Scholar 

  127. 127.

    Scheuer J, Yariv A. Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators. IEEE Journal of Quantum Electronics, 2003, 39(12): 1555–1562

    Google Scholar 

  128. 128.

    Vannahme C, Smith C L C, Christiansen M B, Kristensen A. Emission wavelength of multilayer distributed feedback dye lasers. Applied Physics Letters, 2012, 101(15): 151123

    Google Scholar 

  129. 129.

    Huang W, Shen S, Pu D, Wei G, Ye Y, Peng C, Chen L. Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures. Journal of Physics D, 2015, 48(49): 495105

    Google Scholar 

  130. 130.

    Zhai T, Wu X, Wang M, Tong F, Li S, Ma Y, Deng J, Zhang X. Dual-wavelength polymer laser based on an active/inactive/active sandwich-like structure. Applied Physics Letters, 2016, 109(10): 101906

    Google Scholar 

  131. 131.

    Van Beijnum F, Van Veldhoven P J, Geluk E J, De Dood M J A, ’t Hooft G W, Van Exter M P. Surface plasmon lasing observed in metal hole arrays. Physical Review Letters, 2013, 110(20): 206802

    Google Scholar 

  132. 132.

    Kallinger C, Hilmer M, Haugeneder A, Perner M, Spirkl W, Lemmer U, Feldmann J, Scherf U, Müllen K, Gombert A, Wittwer V. A flexible conjugated polymer laser. Advanced Materials, 1998, 10(12): 920–923

    Google Scholar 

  133. 133.

    Wenger B, Tétreault N, Welland M, Friend R. Mechanically tunable conjugated polymer distributed feedback lasers. Applied Physics Letters, 2010, 97(19): 193303

    Google Scholar 

  134. 134.

    Zhai T, Chen L, Li S, Hu Y, Wang Y, Wang L, Zhang X. Freestanding membrane polymer laser on the end of an optical fiber. Applied Physics Letters, 2016, 108(4): 041904

    Google Scholar 

  135. 135.

    Chen C, Tong F, Cao F, Tong J, Zhai T, Zhang X. Tunable polymer lasers based on metal-dielectric hybrid cavity. Optics Express, 2018, 26(24): 32048–32054

    Google Scholar 

  136. 136.

    Cao F, Niu L, Tong J, Li S, Hayat A, Wang M, Zhai T, Zhang X. Hybrid lasing in a plasmonic cavity. Optics Express, 2018, 26(10): 13383–13389

    Google Scholar 

  137. 137.

    Zhai T, Tong F, Cao F, Niu L, Li S, Wang M, Zhang X. Distributed feedback lasing in a metallic cavity. Applied Physics Letters, 2017, 111(11): 111901

    Google Scholar 

  138. 138.

    Andrew P, Turnbull G A, Samuel I D, Barnes W L. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Applied Physics Letters, 2002, 81(6): 954–956

    Google Scholar 

  139. 139.

    Zhou W, Dridi M, Suh J Y, Kim C H, Co D T, Wasielewski M R, Schatz G C, Odom T W. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8(7): 506–511

    Google Scholar 

  140. 140.

    Foucher C, Guilhabert B, Kanibolotsky A L, Skabara P J, Laurand N, Dawson M D. RGB and white-emitting organic lasers on flexible glass. Optics Express, 2016, 24(3): 2273–2280

    Google Scholar 

  141. 141.

    Wang Y, Tsiminis G, Kanibolotsky A L, Skabara P J, Samuel I D, Turnbull G A. Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators. Optics Express, 2013, 21(12): 14362–14367

    Google Scholar 

  142. 142.

    Whitworth G L, Zhang S, Stevenson J R Y, Ebenhoch B, Samuel I D W, Turnbull G A. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers. Applied Physics Letters, 2015, 107(16): 163301

    Google Scholar 

  143. 143.

    Gaal M, Gadermaier C, Plank H, Moderegger E, Pogantsch A, Leising G, List E J W. Imprinted conjugated polymer laser. Advanced Materials, 2003, 15(14): 1165–1167

    Google Scholar 

  144. 144.

    Liu X, Klinkhammer S, Wang Z, Wienhold T, Vannahme C, Jakobs P J, Bacher A, Muslija A, Mappes T, Lemmer U. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer. Optics Express, 2013, 21(23): 27697–27706

    Google Scholar 

  145. 145.

    Baldo M, Deutsch M, Burrows P, Gossenberger H, Gerstenberg M, Ban V, Forrest S. Organic vapor phase deposition. Advanced Materials, 1998, 10(18): 1505–1514

    Google Scholar 

  146. 146.

    Klinkhammer S, Liu X, Huska K, Shen Y, Vanderheiden S, Valouch S, Vannahme C, Bräse S, Mappes T, Lemmer U. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode. Optics Express, 2012, 20(6): 6357–6364

    Google Scholar 

  147. 147.

    Ge C, Lu M, Jian X, Tan Y, Cunningham B T. Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping. Optics Express, 2010, 18(12): 12980–12991

    Google Scholar 

  148. 148.

    Liu X, Klinkhammer S, Sudau K, Mechau N, Vannahme C, Kaschke J, Mappes T, Wegener M, Lemmer U. Ink-jet-printed organic semiconductor distributed feedback laser. Applied Physics Express, 2012, 5(7): 072101

    Google Scholar 

  149. 149.

    Parafiniuk K, Monnereau C, Sznitko L, Mettra B, Zelechowska M, Andraud C, Miniewicz A, Mysliwiec J. Distributed feedback lasing in amorphous polymers with covalently bonded fluorescent dyes: the influence of photoisomerization process. Macromolecules, 2017, 50(16): 6164–6173

    Google Scholar 

  150. 150.

    Karl M, Glackin J M E, Schubert M, Kronenberg N M, Turnbull G A, Samuel I D W, Gather M C. Flexible and ultra-lightweight polymer membrane lasers. Nature Communications, 2018, 9(1): 1525

    Google Scholar 

  151. 151.

    Namdas E, Tong M, Ledochowitsch P, Mednick S R, Yuen J D, Moses D, Heeger A J. Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers. Advanced Materials, 2009, 21(7): 799–802

    Google Scholar 

  152. 152.

    Pisignano D, Persano L, Visconti P, Cingolani R, Gigli G, Barbarella G, Favaretto L. Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2003, 83(13): 2545–2547

    Google Scholar 

  153. 153.

    Del Carro P, Camposeo A, Stabile R, Mele E, Persano L, Cingolani R, Pisignano D. Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89(20): 201105

    Google Scholar 

  154. 154.

    Chang J, Gwinner M, Caironi M, Sakanoue T, Sirringhaus H. Conjugated-polymer-based lateral heterostructures defined by high-resolution photolithography. Advanced Functional Materials, 2010, 20(17): 2825–2832

    Google Scholar 

  155. 155.

    Berger V, Gauthier-Lafaye O, Costard E. Photonic band gaps and holography. Journal of Applied Physics, 1997, 82(1): 60–64

    Google Scholar 

  156. 156.

    Yoshioka H, Yang Y, Watanabe H, Oki Y. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser. Optics Express, 2012, 20(4): 4690–4696

    Google Scholar 

  157. 157.

    Chen S, Zhou Y, Zhai T, Wang Z, Liu D. Different emission properties of a band edge laser pumped by picosecond and nanosecond pulses. Laser Physics Letters, 2012, 9(8): 570–574

    Google Scholar 

  158. 158.

    Stroisch M, Woggon T, Lemmer U, Bastian G, Violakis G, Pissadakis S. Organic semiconductor distributed feedback laser fabricated by direct laser interference ablation. Optics Express, 2007, 15(7): 3968–3973

    Google Scholar 

  159. 159.

    Zhai T, Zhang X, Pang Z, Dou F. Direct writing of polymer lasers using interference ablation. Advanced Materials, 2011, 23(16): 1860–1864

    Google Scholar 

  160. 160.

    Zhang X, Liu H, Li H, Zhai T. Direct nanopatterning into conjugated polymers using interference crosslinking. Macromolecular Chemistry and Physics, 2012, 213(12): 1285–1290

    Google Scholar 

  161. 161.

    Zhai T, Lin Y, Liu H, Feng S, Zhang X. Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures. Optics Express, 2013, 21(21): 24490–24496

    Google Scholar 

  162. 162.

    Scott B, Wirnsberger G, McGehee M, Chmelka B, Stucky G. Dyedoped mesostructured silica as a distributed feedback laser fabricated by soft lithography. Advanced Materials, 2001, 13(16): 1231–1234

    Google Scholar 

  163. 163.

    Ge C, Lu M, Tan Y, Cunningham B T. Enhancement of pump efficiency of a visible wavelength organic distributed feedback laser by resonant optical pumping. Optics Express, 2011, 19(6): 5086–5092

    Google Scholar 

  164. 164.

    Lawrence J, Turnbull G, Samuel I. Polymer laser fabricated by a simple micromolding process. Applied Physics Letters, 2003, 82(23): 4023–4025

    Google Scholar 

  165. 165.

    Salerno M, Gigli G, Zavelani-Rossi M, Perissinotto S, Lanzani G. Effects of morphology and optical contrast in organic distributed feedback lasers. Applied Physics Letters, 2007, 90(11): 111110

    Google Scholar 

  166. 166.

    Yamashita K, Takeuchi N, Oe K, Yanagi H. Simultaneous RGB lasing from a single-chip polymer device. Optics Letters, 2010, 35(14): 2451–2453

    Google Scholar 

  167. 167.

    Kuehne A J C, Gather M C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chemical Reviews, 2016, 116(21): 12823–12864

    Google Scholar 

  168. 168.

    Samuel I D, Turnbull G A. Organic semiconductor lasers. Chemical Reviews, 2007, 107(4): 1272–1295

    Google Scholar 

  169. 169.

    Grivas C, Pollnau M. Organic solid-state integrated amplifiers and lasers. Laser & Photonics Reviews, 2012, 6(4): 419–462

    Google Scholar 

  170. 170.

    Heliotis G, Xia R, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L. Blue, surface-emitting, distributed feedback polyfluorene lasers. Applied Physics Letters, 2003, 83(11): 2118–2120

    Google Scholar 

  171. 171.

    Jung H, Han C, Kim H, Cho K S, Roh Y G, Park Y, Jeon H. Tunable colloidal quantum dot distributed feedback lasers integrated on a continuously chirped surface grating. Nanoscale, 2018, 10(48): 22745–22749

    Google Scholar 

  172. 172.

    Zhai T, Wu X, Tong F, Li S, Wang M, Zhang X. Multi-wavelength lasing in a beat structure. Applied Physics Letters, 2016, 109(26): 261906

    Google Scholar 

  173. 173.

    Karnutsch C, Pflumm C, Heliotis G, deMello J C, Bradley D D C, Wang J, Weimann T, Haug V, Gärtner C, Lemmer U. Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Applied Physics Letters, 2007, 90(13): 131104

    Google Scholar 

  174. 174.

    Karnutsch C, Gýrtner C, Haug V, Lemmer U, Farrell T, Nehls B S, Scherf U, Wang J, Weimann T, Heliotis G, Pflumm C, deMello J C, Bradley D D C. Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Applied Physics Letters, 2006, 89(20): 201108

    Google Scholar 

  175. 175.

    Zhai T, Tong F, Wang Y, Wu X, Li S, Wang M, Zhang X. Polymer lasers assembled by suspending membranes on a distributed feedback grating. Optics Express, 2016, 24(19): 22028–22033

    Google Scholar 

  176. 176.

    Notomi M, Suzuki H, Tamamura T, Edagawa K. Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice. Physical Review Letters, 2004, 92(12): 123906

    Google Scholar 

  177. 177.

    Turnbull G, Andrew P, Barnes W, Samuel I. Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Applied Physics Letters, 2003, 82(3): 313–315

    Google Scholar 

  178. 178.

    Harwell J R, Whitworth G L, Turnbull G A, Samuel I D W. Green perovskite distributed feedback lasers. Scientific Reports, 2017, 7(1): 11727

    Google Scholar 

  179. 179.

    Prins F, Kim D K, Cui J, De Leo E, Spiegel L L, McPeak K M, Norris D J. Direct patterning of colloidal quantum-dot thin films for enhanced and spectrally selective out-coupling of emission. Nano Letters, 2017, 17(3): 1319–1325

    Google Scholar 

  180. 180.

    Cao W, Muñoz A, Palffy-Muhoray P, Taheri B. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nature Materials, 2002, 1(2): 111–113

    Google Scholar 

  181. 181.

    Yoshino K, Tatsuhara S, Kawagishi Y, Ozaki M, Zakhidov A A, Vardeny Z V. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals. Applied Physics Letters, 1999, 74(18): 2590–2592

    Google Scholar 

  182. 182.

    Shkunov M, Vardeny Z, DeLong M, Polson R, Zakhidov A, Baughman R. Tunable, gap-state lasing in switchable directions for opal photonic crystals. Advanced Functional Materials, 2002, 12(1): 21–26

    Google Scholar 

  183. 183.

    Kok M H, Lu W, Tam W Y, Wong G K. Lasing from dye-doped icosahedral quasicrystals in dichromate gelatin emulsions. Optics Express, 2009, 17(9): 7275–7284

    Google Scholar 

  184. 184.

    Hirayama H, Hamano T, Aoyagi Y. Novel surface emitting laser diode using photonic band-gap crystal cavity. Applied Physics Letters, 1996, 69(6): 791–793

    Google Scholar 

  185. 185.

    Yang Y, Turnbull G A, Samuel I D W. Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Applied Physics Letters, 2008, 92(16): 163306

    Google Scholar 

  186. 186.

    Riedl T, Rabe T, Johannes H H, Kowalsky W, Wang J, Weimann T, Hinze P, Nehls B, Farrell T, Scherf U. Tunable organic thin-film laser pumped by an inorganic violet diode laser. Applied Physics Letters, 2006, 88(24): 241116

    Google Scholar 

  187. 187.

    Heydari E, Buller J, Wischerhoff E, Laschewsky A, Döring S, Stumpe J. Label-free biosensor based on an all — polymer DFB laser. Advanced Optical Materials, 2014, 2(2): 137–141

    Google Scholar 

  188. 188.

    Haughey A M, Guilhabert B, Kanibolotsky A L, Skabara P J, Dawson M D, Burley G A, Laurand N. An oligofluorene truxene based distributed feedback laser for biosensing applications. Biosensors & Bioelectronics, 2014, 54: 679–686

    Google Scholar 

  189. 189.

    Cao F, Zhang S, Tong J, Chen C, Niu L, Zhai T, Zhang X. Effects of cavity structure on tuning properties of polymer lasers in a liquid environment. Polymers, 2019, 11(2): 329

    Google Scholar 

  190. 190.

    Schneider D, Rabe T, Riedl T, Dobbertin T, Kröger M, Becker E, Johannes H H, Kowalsky W, Weimann T, Wang J, Hinze P, Gerhard A, Stössel P, Vestweber H. An ultraviolet organic thin-film solid-state laser for biomarker applications. Advanced Materials, 2005, 17(1): 31–34

    Google Scholar 

  191. 191.

    Retolaza A, Martinez-Perdiguero J, Merino S, Morales-Vidal M, Boj P G, Quintana J A, Villalvilla J M, Díaz-García M A. Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker. Sensors and Actuators B, Chemical, 2016, 223: 261–265

    Google Scholar 

  192. 192.

    Oki Y, Miyamoto S, Maeda M, Vasa N J. Multiwavelength distributed-feedback dye laser array and its application to spectroscopy. Optics Letters, 2002, 27(14): 1220–1222

    Google Scholar 

  193. 193.

    Voss T, Scheel D, Schade W. A microchip-laser-pumped DFB-polymer-dye laser. Applied Physics B, Lasers and Optics, 2001, 73(2): 105–109

    Google Scholar 

  194. 194.

    Christiansen M B, Schøler M, Kristensen A. Integration of active and passive polymer optics. Optics Express, 2007, 15(7): 3931–3939

    Google Scholar 

  195. 195.

    Vannahme C, Klinkhammer S, Lemmer U, Mappes T. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Optics Express, 2011, 19(9): 8179–8186

    Google Scholar 

  196. 196.

    Toussaere E, Bouadma N, Zyss J. Monolithic integrated four DFB lasers array with a polymer-based combiner for WDM applications. Optical Materials, 1998, 9(1–4): 255–258

    Google Scholar 

  197. 197.

    Ma H, Jen Y, Dalton L R. Polymer-based optical waveguides: materials, processing, and devices. Advanced Materials, 2002, 14(19): 1339–1365

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61822501, 11734001, and 11704017) and the Beijing Natural Science Foundation (No. Z180015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tianrui Zhai.

Additional information

Yulan Fu obtained her Ph.D. degree from School of Physics, Peking University in 2013. She is currently an associate professor in the College of Applied Science, Beijing University of Technology. Her research interests are mainly focused on on-chip micro-/nano-photonic devices, nonlinear photonic materials and nanostructures.

Tianrui Zhai received his Ph.D. degree from the Department of Physics, Beijing Normal University in 2010. He is currently a professor in the College of Applied Sciences, Beijing University of Technology. His research interests are mainly focused on microcavity lasers, plasmonic physics and devices, and nanophotonics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Zhai, T. Distributed feedback organic lasing in photonic crystals. Front. Optoelectron. 13, 18–34 (2020). https://doi.org/10.1007/s12200-019-0942-1

Download citation

Keywords

  • photonic crystals
  • microcavity lasers
  • distributed feedback (DFB)