Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film


Optical cavity polaritons, originated from strong coupling between the excitons in materials and photons in the confined cavities field, have recently emerged as their applications in the high-speed lowpower polaritons devices, low-threshold lasing and so on. However, the traditional exciton polaritons based on metal plasmonic structures or Fabry-Perot cavities suffer from the disadvantages of large intrinsic losses or hard to integrate and nanofabricate. This greatly limits the applications of exciton poalritons. Thus, here we implement a compact low-loss dielectric photonic — organic nanostructure by placing a 2-nm-thick PVA doped with TDBC film on top of a planar Si asymmetric nanogratings to reveal the exciton polaritons modes. We find a distinct anti-crossing dispersion behavior appears with a 117.16 meV Rabi splitting when varying the period of Si nanogratings. Polaritons dispersion and mode anti-crossing behaviors are also observed when considering the independence of the height of Si, width of Si nanowire B, and distance between the two Si nanowires in one period. This work offers an opportunity to realize low-loss novel polaritons applications.

This is a preview of subscription content, access via your institution.


  1. 1.

    Liu X, Menon V M. Control of light-matter interaction in 2D atomic crystals using microcavities. IEEE Journal of Quantum Electronics, 2015, 51(10): 1–8

    Article  Google Scholar 

  2. 2.

    Törmä P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review. Reports on progress in physics. Physical Society (Great Britain), 2015, 78(1): 013901

    Article  Google Scholar 

  3. 3.

    Ren J, Gu Y, Zhao D, Zhang F, Zhang T, Gong Q. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection. Physical Review Letters, 2017, 118(7): 073604

    Article  Google Scholar 

  4. 4.

    Wang S, Li S, Chervy T, Shalabney A, Azzini S, Orgiu E, Hutchison J A, Genet C, Samorì P, Ebbesen T W. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Letters, 2016, 16(7): 4368–4374

    Article  Google Scholar 

  5. 5.

    Lin Q Y, Li Z, Brown K A, O’Brien M N, Ross M B, Zhou Y, Butun S, Chen P C, Schatz G C, Dravid V P, Aydin K, Mirkin C A. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Letters, 2015, 15(7): 4699–4703

    Article  Google Scholar 

  6. 6.

    Guo X, Zou C L, Jung H, Tang H X. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Physical Review Letters, 2016, 117(12): 123902

    Article  Google Scholar 

  7. 7.

    van Vugt L K, Rühle S, Ravindran P, Gerritsen H C, Kuipers L, Vanmaekelbergh D. Exciton polaritons confined in a ZnO nanowire cavity. Physical Review Letters, 2006, 97(14): 147401

    Article  Google Scholar 

  8. 8.

    Sun Y, Yoon Y, Steger M, Liu G, Pfeiffer L N, West K, Snoke D W, Nelson K A. Direct measurement of polariton-polariton interaction strength. Nature Physics, 2017, 13(9): 870–875

    Article  Google Scholar 

  9. 9.

    Baranov D G, Wersäll M, Cuadra J, Antosiewicz T J, Shegai T. Novel nanostructures and materials for strong light-matter interactions. ACS Photonics, 2018, 5(1): 24–42

    Article  Google Scholar 

  10. 10.

    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photonics, 2013, 7(2): 128–132

    Article  Google Scholar 

  11. 11.

    Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices. Nature Materials, 2016, 15(10): 1061–1073

    Article  Google Scholar 

  12. 12.

    Byrnes T, Kim N Y, Yamamoto Y. Exciton-polariton condensates. Nature Physics, 2014, 10(11): 803–813

    Article  Google Scholar 

  13. 13.

    Schneider C, Rahimi-Iman A, Kim N Y, Fischer J, Savenko I G, Amthor M, Lermer M, Wolf A, Worschech L, Kulakovskii V D, Shelykh I A, Kamp M, Reitzenstein S, Forchel A, Yamamoto Y, Höfling S. An electrically pumped polariton laser. Nature, 2013, 497 (7449): 348–352

    Article  Google Scholar 

  14. 14.

    Paschos G G, Somaschi N, Tsintzos S I, Coles D, Bricks J L, Hatzopoulos Z, Lidzey D G, Lagoudakis P G, Savvidis P G. Hybrid organic-inorganic polariton laser. Scientific Reports, 2017, 7(1): 11377

    Article  Google Scholar 

  15. 15.

    Amo A, Liew T C H, Adrados C, Houdre R, Giacobino E, Kavokin A V, Bramati A. Exciton-polariton spin switches. Nature Photonics, 2010, 4(6): 361–366

    Article  Google Scholar 

  16. 16.

    De Giorgi M, Ballarini D, Cancellieri E, Marchetti F M, Szymanska M H, Tejedor C, Cingolani R, Giacobino E, Bramati A, Gigli G, Sanvitto D. Control and ultrafast dynamics of a two-fluid polariton switch. Physical Review Letters, 2012, 109(26): 266407

    Article  Google Scholar 

  17. 17.

    Fraser M D. Coherent exciton-polariton devices. Semiconductor Science and Technology, 2017, 32(9): 093003

    Article  Google Scholar 

  18. 18.

    Solnyshkov D D, Bleu O, Malpuech G. All optical controlled-NOT gate based on an exciton-polariton circuit. Superlattices and Microstructures, 2015, 83: 466–475

    Article  Google Scholar 

  19. 19.

    Bose R, Sridharan D, Kim H, Solomon G S, Waks E. Low-photonnumber optical switching with a single quantum dot coupled to a photonic crystal cavity. Physical Review Letters, 2012, 108(22): 227402

    Article  Google Scholar 

  20. 20.

    Demirchyan S S, Chestnov I Y, Alodjants A P, Glazov M M, Kavokin A V. Qubits based on polariton Rabi oscillators. Physical Review Letters, 2014, 112(19): 196403

    Article  Google Scholar 

  21. 21.

    Solnyshkov D D, Johne R, Shelykh I A, Malpuech G. Chaotic Josephson oscillations of exciton-polaritons and their applications. Physical Review B, 2009, 80(23): 235303

    Article  Google Scholar 

  22. 22.

    Gao T, Eldridge P S, Liew T C H, Tsintzos S I, Stavrinidis G, Deligeorgis G, Hatzopoulos Z, Savvidis P G. Polariton condensate transistor switch. Physical Review B, 2012, 85(23): 235102

    Article  Google Scholar 

  23. 23.

    Antón C, Liew T C H, Sarkar D, Martín M D, Hatzopoulos Z, Eldridge P S, Savvidis P G, Viña L. Operation speed of polariton condensate switches gated by excitons. Physical Review B, 2014, 89(23): 235312

    Article  Google Scholar 

  24. 24.

    Gonçalves P A D, Bertelsen L P, Xiao S S, Mortensen N A. Plasmon-exciton polaritons in two-dimensional semiconductor/metal interfaces. Physical Review B, 2018, 97(4): 041402 (R)

    Article  Google Scholar 

  25. 25.

    Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z, Xiong Q. Room-temperature polariton lasing in allinorganic perovskite nanoplatelets. Nano Letters, 2017, 17(6): 3982–3988

    Article  Google Scholar 

  26. 26.

    Zhang L, Gogna R, Burg W, Tutuc E, Deng H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nature Communications, 2018, 9(1): 713

    Article  Google Scholar 

  27. 27.

    Wang H, Toma A, Wang H Y, Bozzola A, Miele E, Haddadpour A, Veronis G, De Angelis F, Wang L, Chen Q D, Xu H L, Sun H B, Zaccaria R P. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays. Nanoscale, 2016, 8(27): 13445–13453

    Article  Google Scholar 

  28. 28.

    Fofang N T, Grady N K, Fan Z, Govorov A O, Halas N J. Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Letters, 2011, 11(4): 1556–1560

    Article  Google Scholar 

  29. 29.

    Gentile M J, Núñez-Sánchez S, Barnes W L. Optical fieldenhancement and subwavelength field-confinement using excitonic nanostructures. Nano Letters, 2014, 14(5): 2339–2344

    Article  Google Scholar 

  30. 30.

    Zheng D, Zhang S, Deng Q, Kang M, Nordlander P, Xu H. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Letters, 2017, 17(6): 3809–3814

    Article  Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200403), the National Natural Science Foundation of China (Grant Nos. 61775003, 11734001, 11527901, and 11804008), the National Postdoctoral Program for Innovative Talents (No. BX201700011), and the China Postdoctoral Science Foundation (No. 2018M630019), and Beijing Municipal Science & Technology Commission (No. Z191100007219001).

Author information



Corresponding author

Correspondence to Xiaoyong Hu.

Ethics declarations

Competing financial interests The authors declare that they have no competing financial interests.

Additional information

Zhen Chai is a postdoctor of Prof. Qihuang Gong at Peking University. Now she majors in the study of the design of two-dimensional materials-nanostructures exciton polaritons and its application in optical devices.

Xiaoyong Hu is a Cheung Kong professor of physics at Peking University. Prof. Hu’s current research interests include photonic crystals, plasmonics, topological photonics and integrated photonic devices.

Qihuang Gong is a member of the Chinese Academy Sciences and Vice President at Peking University, China, where he is also the founding director of the Institute of Modern Optics. Prof. Gong’s current research interests are ultrafast optics, nonlinear optics, mesoscopic quantum optics and optical devices for applications.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chai, Z., Hu, X. & Gong, Q. Exciton polaritons based on planar dielectric Si asymmetric nanogratings coupled with J-aggregated dyes film. Front. Optoelectron. 13, 4–11 (2020). https://doi.org/10.1007/s12200-019-0940-3

Download citation


  • exciton polaritons
  • dielectric Si asymmetric nanogratings
  • TDBC J-aggregated dyes film