Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 3, pp 285–290 | Cite as

ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells

  • Xiaoyan Hu
  • Heng Wang
Research Article
  • 27 Downloads

Abstract

In this paper, ZnO/Nb2O5 core/shell nanorod arrays were synthesized and used as photoanodes for dye-sensitized solar cells (DSSCs). We first synthesized ZnO nanorod array on fluorine-doped tin oxide (FTO) glasses by a hydrothermal method, and then ZnO/Nb2O5 core/shell nanorod array was directly obtained via solvothermal reaction in NbCl5 solution. The scanning electron microscope (SEM) and transmission electron microscope (TEM) images revealed that the ZnO nanorods were uniformly wrapped by Nb2O5 shell layers with a thickness of 30–40 nm. Photovoltaic characterization showed that the device based on ZnO/Nb2O5 core/shell nanorod photoanode exhibited an improved efficiency of 1.995%, which was much higher than the efficiency of 0.856% for the DSSC based on bare ZnO nanorod photoanode. This proved that the photovoltaic performance of ZnO nanorods could be improved by wrapping with Nb2O5 shells.

Keywords

ZnO Nb2O5 core/shell nanorods solvothermal dye-sensitized solar cell (DSSC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 11647073, 11547263) and the financial support from High Education Natural Science Research Project of Jiangsu Province (No. 15KJB430033).

References

  1. 1.
    O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO22 films. Nature, 1991, 353(6346): 737–740CrossRefGoogle Scholar
  2. 2.
    Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Grätzel M. Solid-state dye-sensitized mesoporous TiO22 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583–585CrossRefGoogle Scholar
  3. 3.
    Shang Y, Hao S, Yang C, Chen G. Enhancing solar cell efficiency using photon upconversion materials. Nanomaterials (Basel, Switzerland), 2015, 5(4): 1782–1809Google Scholar
  4. 4.
    Hao S, Shang Y, Li D, Ågren H, Yang C, Chen G. Enhancing dyesensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale, 2017, 9(20): 6711–6715CrossRefGoogle Scholar
  5. 5.
    Prabakar K, Son M, Kim W Y, Kim H. TiO22 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells. Materials Chemistry and Physics, 2011, 125(1–2): 12–14CrossRefGoogle Scholar
  6. 6.
    Chandiran A K, Abdi-Jalebi M, Nazeeruddin M K, Grätzel M. Analysis of electron transfer properties of ZnO and TiO22 photoanodes for dye-sensitized solar cells. ACS Nano, 2014, 8(3): 2261–2268CrossRefGoogle Scholar
  7. 7.
    Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 2003, 125(2): 475–482CrossRefGoogle Scholar
  8. 8.
    Plank N O V, Howard I, Rao A, Wilson M W B, Ducati C, Mane R S, Bendall J S, Louca R R M, Greenham N C, Miura H, Friend R H, Snaith H J, Welland M E. Efficient ZnO nanowire solid-state dyesensitized solar cells using organic dyes and core-shell nanostructures. Journal of Physical Chemistry C, 2009, 113(43): 18515–18522CrossRefGoogle Scholar
  9. 9.
    Barea E, Xu X Q, Gonzalez-Pedro V, Ripollés-Sanchis T, Fabregat-Santiago F, Bisquert J. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells. Energy & Environmental Science, 2011, 4(9): 3414–3419CrossRefGoogle Scholar
  10. 10.
    Ueno S, Fujihara S. Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochimica Acta, 2011, 56(7): 2906–2913CrossRefGoogle Scholar
  11. 11.
    Yang M, Kim D, Jha H, Lee K, Paul J, Schmuki P. Nb doping of TiO22 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chemical Communications (Cambridge, England), 2011, 47 (7): 2032–2034CrossRefGoogle Scholar
  12. 12.
    Fiz R, Hernandez-Ramirez F, Fischer T, Lopez-Conesa L, Estrade S, Peiro F, Mathur S. Synthesis, characterization, and humidity detection properties of Nb2O5 nanorods and SnO2/Nb2O5 heterostructures. Journal of Physical Chemistry C, 2013, 117(19): 10086–10094CrossRefGoogle Scholar
  13. 13.
    Mäkinen V, Honkala K, Hakkinen H. Atomic layer deposition of aluminum oxide on TiO22 and its impact on N3 dye adsorption from first principles. Journal of Physical Chemistry C, 2011, 115(18): 9250–9259CrossRefGoogle Scholar
  14. 14.
    Lin C Y, Lai Y H, Chen H W, Chen J G, Kung C W, Vittal R, Ho K C. Highly efficient dye-sensitized solar cell with a ZnO nanosheetbased photoanode. Energy & Environmental Science, 2011, 4(9): 3448–3455CrossRefGoogle Scholar
  15. 15.
    Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantarzadeh K. Nanostructured tungsten oxide–properties, synthesis, and applications. Advanced Functional Materials, 2011, 21(12): 2175–2196CrossRefGoogle Scholar
  16. 16.
    Huang Y T, Cheng R, Zhai P, Lee H, Chang Y H, Feng S P. Solution-based synthesis of ultrasmall Nb2O5 nanoparticles for functional thin films in dye-sensitized and perovskite solar cells. Electrochimica Acta, 2017, 236: 131–139CrossRefGoogle Scholar
  17. 17.
    Chu L, Liu W, Yu A, Qin Z F, Hu R Y, Shu H Z, Luo Q P, Min Y G, Yang J P, Li X A. Effect of TiO22 modification on urchin-like orthorhombic Nb2O5 nanospheres as photoelectrodes in dyesensitized solar cells. Solar Energy, 2017, 153: 584–589CrossRefGoogle Scholar
  18. 18.
    Le Viet A, Jose R, Reddy M V, Chowdari B V R, Ramakrishna S. Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. Journal of Physical Chemistry C, 2010, 114(49): 21795–21800CrossRefGoogle Scholar
  19. 19.
    Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chemistry of Materials, 1998, 10(12): 3825–3832CrossRefGoogle Scholar
  20. 20.
    Jia Z, Tang Y, Luo L, Li B, Chen Z, Wang J, Zheng H. Room temperature fabrication of single crystal nanotubes of CaSn(OH)6 through sonochemical precipitation. Journal of Colloid and Interface Science, 2009, 334(2): 202–207CrossRefGoogle Scholar
  21. 21.
    Fang X, Li Y, Zhang S, Bai L, Yuan N Y, Ding J N. The dye adsorption optimization of ZnO nanorod-based dye-sensitized solar cells. Solar Energy, 2014, 105: 14–19CrossRefGoogle Scholar
  22. 22.
    Jo Y, Yun Y J, Alam Khan M, Jun Y. Densely packed setose ZnO nanorod arrays for dye sensitized solar cells. Synthetic Metals, 2014, 198: 137–141CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of New Energy and Electronic EngineeringYancheng Teachers UniversityYanchengChina

Personalised recommendations