Frontiers of Optoelectronics

, Volume 10, Issue 2, pp 103–110 | Cite as

Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells

  • Yuqin Liao
  • Xianyuan Jiang
  • Wenjia Zhou
  • Zhifang Shi
  • Binghan Li
  • Qixi Mi
  • Zhijun Ning
Research Article

Abstract

Mixed lead-tin (Pb-Sn) perovskites present a promising strategy to extend the light-harvesting range of perovskite-based solar cells (PSCs). The use of electrontransporting layer or hole-transporting layer (HTL) is critical to achieve high device efficiency. This strategy, however, requires tedious layer-by-layer fabrication as well as high-temperature annealing for certain oxides. In this work, we fabricated HTL-free planar FAPb0.5Sn0.5I3 PSCs with the highest efficiency of 7.94%. High shortcircuit current density of 23.13 mA/cm2 was attained, indicating effective charge extraction at the ITO/FAPb0.5Sn0.5I3 interface. This finding provides an alternative strategy to simplify the manufacture of single-junction or tandem PSCs.

Keywords

solar cell perovskite hole-transporting layer (HTL) interface engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by start-up funding from ShanghaiTech University, The Young 1000 Talents Program, the National Natural Science Foundation of China (Grant Nos. U1632118, and 21571129), the National Key Research Program (No. 2016YFA0204000), the Shanghai Key Research Program (No. 16JC1402100), and the Shanghai International Cooperation Project (No. 16520720700). The authors are grateful to the test centers of both ShanghaiTech University and CAS Key Laboratory of Low- Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences.

References

  1. 1.
    Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M. The origin of high efficiency in lowtemperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014, 7(1): 399–407CrossRefGoogle Scholar
  2. 2.
    Park N G. Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015, 18(2): 65–72CrossRefGoogle Scholar
  3. 3.
    Ishihara T. Optical properties of PbI-based perovskite structures. Journal of Luminescence, 1994, 60–61: 269–274CrossRefGoogle Scholar
  4. 4.
    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J. Enhancement of perovskite-based solar cells employing coreshell metal nanoparticles. Nano Letters, 2013, 13(9): 4505–4510CrossRefGoogle Scholar
  5. 5.
    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584–1589CrossRefGoogle Scholar
  6. 6.
    Ponseca C S Jr, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundström V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, 136(14): 5189–5192CrossRefGoogle Scholar
  7. 7.
    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344CrossRefGoogle Scholar
  8. 8.
    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C. Long-range balanced electron- and holetransport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344–347CrossRefGoogle Scholar
  9. 9.
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths> 175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970CrossRefGoogle Scholar
  10. 10.
    Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nature Photonics, 2014, 8(7): 506–514CrossRefGoogle Scholar
  11. 11.
    Snaith H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630CrossRefGoogle Scholar
  12. 12.
    Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395–398CrossRefGoogle Scholar
  13. 13.
    Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051CrossRefGoogle Scholar
  14. 14.
    Solar cell efficiency table, www.nrel.gov/ncpv/; accessed: April 2016Google Scholar
  15. 15.
    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237CrossRefGoogle Scholar
  16. 16.
    Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519CrossRefGoogle Scholar
  17. 17.
    Zhao D, Yu Y, Wang C, Liao W, Shrestha N, Grice C R, Cimaroli A J, Guan L, Ellingson R J, Zhu K, Zhao X, Xiong R G, Yan Y. Lowbandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2: 17018CrossRefGoogle Scholar
  18. 18.
    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647CrossRefGoogle Scholar
  19. 19.
    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 2014, 24(1): 151–157CrossRefGoogle Scholar
  20. 20.
    Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2013, 8(2): 133–138CrossRefGoogle Scholar
  21. 21.
    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546CrossRefGoogle Scholar
  22. 22.
    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P,Wen T C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 2013, 25(27): 3727–3732CrossRefGoogle Scholar
  23. 23.
    Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam MA, Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525CrossRefGoogle Scholar
  24. 24.
    Heo J H, Han H J, Kim D, Ahn T K, Im S H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015, 8(5): 1602–1608CrossRefGoogle Scholar
  25. 25.
    Wang J T W, Wang Z, Pathak S, Zhang W, de Quilettes D W, Wisnivesky-Rocca-Rivarola F, Huang J, Nayak P K, Patel J B,s Mohd Yusof H A, Vaynzof Y, Zhu R, Ramirez I, Zhang J, Ducati C, Grovenor C, Johnston M B, Ginger D S, Nicholas R J, Snaith H J. Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 2016, 9(9): 2892–2901CrossRefGoogle Scholar
  26. 26.
    Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. Fully printable mesoscopic perovskite solar cells with organic silane selfassembled monolayer. Journal of the American Chemical Society, 2015, 137(5): 1790–1793CrossRefGoogle Scholar
  27. 27.
    Yang Y, Ri K, Mei A, Liu L, Hu M, Liu T, Li X, Han H. The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9103–9107CrossRefGoogle Scholar
  28. 28.
    Luo Q, Ma H, Zhang Y, Yin X, Yao Z, Wang N, Li J, Fan S, Jiang K, Lin H. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(15): 5569–5577CrossRefGoogle Scholar
  29. 29.
    Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q. An allcarbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Advances, 2014, 4(95): 52825–52830CrossRefGoogle Scholar
  30. 30.
    Yu Z, Chen B, Liu P, Wang C, Bu C, Cheng N, Bai S, Yan Y, Zhao X. Stable organic-inorganic perovskite solar cells without holeconductor layer achieved via cell structure design and contact engineering. Advanced Functional Materials, 2016, 26(27): 4866–4873CrossRefGoogle Scholar
  31. 31.
    Ye S, Rao H, Yan W, Li Y, Sun W, Peng H, Liu Z, Bian Z, Li Y, Huang C. A strategy to simplify the preparation process of perovskite solar cells by Co-deposition of a hole-conductor and a perovskite layer. Advanced Materials, 2016, 28(43): 9648–9654CrossRefGoogle Scholar
  32. 32.
    Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano, 2014, 8(10): 10161–10167CrossRefGoogle Scholar
  33. 33.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298CrossRefGoogle Scholar
  34. 34.
    Tsai K W, Chueh C C, Williams S T, Wen T C, Jen A K Y. Highperformance hole-transporting layer-free conventional perovskite/ fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9128–9132CrossRefGoogle Scholar
  35. 35.
    Li Y, Ye S, Sun W, Yan W, Li Y, Bian Z, Liu Z, Wang S, Huang C. Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(36): 18389–18394CrossRefGoogle Scholar
  36. 36.
    Bao X, Zhu Q, Qiu M, Yang A, Wang Y, Zhu D, Wang J, Yang R. High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(38): 19294–19298CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Hu X, Chen L, Huang Z, Fu Q, Liu Y, Zhang L, Chen Y. Flexible, hole transporting layer-free and stable CH3NH3PbI3/ PC61BM planar heterojunction perovskite solar cells. Organic Electronics, 2016, 30: 281–288CrossRefGoogle Scholar
  38. 38.
    Marshall K P, Walker M, Walton R I, Hatton R A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy, 2016, 1: 16178CrossRefGoogle Scholar
  39. 39.
    Feng H J, Paudel T R, Tsymbal E Y, Zeng X C. Tunable optical properties and charge separation in CH3NH3SnxPb1–xI3/TiO2-based planar perovskites cells. Journal of the American Chemical Society, 2015, 137(25): 8227–8236CrossRefGoogle Scholar
  40. 40.
    Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T W, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861–865CrossRefGoogle Scholar
  41. 41.
    Deng Y, Xiao Z, Huang J. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials, 2015, 5(20): 1500721CrossRefGoogle Scholar
  42. 42.
    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Advanced Materials, 2014, 26(41): 7122–7127CrossRefGoogle Scholar
  43. 43.
    Koh T M, Krishnamoorthy T, Yantara N, Shi C, LeongW L, Boix P P, Grimsdale A C, Mhaisalkar S G, Mathews N. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(29): 14996–15000CrossRefGoogle Scholar
  44. 44.
    Liao W, Zhao D, Yu Y, Grice C R,Wang C, Cimaroli A J, Schulz P, Meng W, Zhu K, Xiong R G, Yan Y. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Advanced Materials, 2016, 28(42): 9333–9340CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yuqin Liao
    • 1
    • 2
    • 3
  • Xianyuan Jiang
    • 2
    • 3
  • Wenjia Zhou
    • 2
  • Zhifang Shi
    • 2
    • 3
  • Binghan Li
    • 2
    • 3
  • Qixi Mi
    • 2
  • Zhijun Ning
    • 2
  1. 1.Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  2. 2.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations