Frontiers of Optoelectronics

, Volume 10, Issue 1, pp 18–30 | Cite as

Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics

  • Chao Chen
  • David C. Bobela
  • Ye Yang
  • Shuaicheng Lu
  • Kai Zeng
  • Cong Ge
  • Bo Yang
  • Liang Gao
  • Yang Zhao
  • Matthew C. Beard
  • Jiang Tang
Research Article


Antimony selenide (Sb2Se3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb2Se3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb2Se3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states.We believe such a comprehensive characterization of the basic physical properties of Sb2Se3 lays a solid foundation for further optimization of solar device performance.


antimony selenide (Sb2Se3mobility lifetime diffusion length defects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (No. 2016YFA0204000), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61322401 and 91433105), the Special Fund for Strategic New Development of Shenzhen, China (No. JCYJ20160414102210144) and “National 1000 Young Talents” project. Professor Shiyou Chen at East China Normal University is acknowledged for helpful discussions. The authors would like to thank the Analytical and Testing Center of HUST and the Center for Nanoscale Characterization and Devices of WNLO for the characterization support.

Supplementary material

12200_2017_702_MOESM1_ESM.pdf (643 kb)
Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics


  1. 1.
    Petzelt J, Grigas J. Far infrared dielectric dispersion in Sb2S3, Bi2S3 and Sb2Se3 single crystals. Ferroelectrics, 1973, 5(1): 59–68CrossRefGoogle Scholar
  2. 2.
    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J. Solution-processed antimony selenide heterojunction solar cells. Advanced Energy Materials, 2014, 4(8): 1301846CrossRefGoogle Scholar
  3. 3.
    Chen C, Li W, Zhou Y, Chen C, Luo M, Liu X, Zeng K, Yang B, Zhang C, Han J, Tang J. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Applied Physics Letters, 2015, 107(4): 043905CrossRefGoogle Scholar
  4. 4.
    Ghosh G. The Sb-Se (antimony-selenium) system. Journal of Phase Equilibria, 1993, 14(6): 753–763CrossRefGoogle Scholar
  5. 5.
    Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415CrossRefGoogle Scholar
  6. 6.
    Luo M, Leng M, Liu X, Chen J, Chen C, Qin S, Tang J. Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 104(17): 173904CrossRefGoogle Scholar
  7. 7.
    Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J. Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Applied Materials & Interfaces, 2014, 6(13): 10687–10695CrossRefGoogle Scholar
  8. 8.
    Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J. Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 105(8): 083905CrossRefGoogle Scholar
  9. 9.
    Liu X, Chen C, Wang L, Zhong J, Luo M, Chen J, Xue D J, Li D, Zhou Y, Tang J. Improving the performance of Sb2Se3 thin film solar cells over 4% by controlled addition of oxygen during film deposition. Progress in Photovoltaics: Research and Applications, 2015, 23(12): 1828–1836CrossRefGoogle Scholar
  10. 10.
    Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G. Overcoming efficiency limitations of SnS-based solar cells. Advanced Energy Materials, 2014, 4(15): 1400496CrossRefGoogle Scholar
  11. 11.
    Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%, C051171.html (accessed: November, 2016)Google Scholar
  12. 12.
    First Solar pushes CdTe cell efficiency to record 22.1%, 22.1 (accessed: November, 2016)Google Scholar
  13. 13.
    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7): 1301465CrossRefGoogle Scholar
  14. 14.
    Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%. Applied Physics Letters, 2015, 106 (21): 213902CrossRefGoogle Scholar
  15. 15.
    Black J, Conwell E M, Seigle L, Spencer C W. Electrical and optical properties of some M2 V-BN3 VI-B semiconductors. Journal of Physics and Chemistry of Solids, 1957, 2(3): 240–251CrossRefGoogle Scholar
  16. 16.
    Benjamin S L, de Groot C H, Hector A L, Huang R, Koukharenko E, Levason W, Reid G. Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivity. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(2): 423–430CrossRefGoogle Scholar
  17. 17.
    Gilbert L R, Van Pelt B, Wood C. The thermal activation energy of crystalline Sb2Se3. Journal of Physics and Chemistry of Solids, 1974, 35(12): 1629–1632CrossRefGoogle Scholar
  18. 18.
    Ma J, Su T, Li MD, Du W, Huang J, Guan X, Phillips D L. How and when does an unusual and efficient photoredox reaction of 2-(1-hydroxyethyl) 9, 10-anthraquinone occur? A combined timeresolved spectroscopic and DFT study. Journal of the American Chemical Society, 2012, 134(36): 14858–14868CrossRefGoogle Scholar
  19. 19.
    Jackson W B, Amer N M, Boccara A C, Fournier D. Photothermal deflection spectroscopy and detection. Applied Optics, 1981, 20(8): 1333–1344CrossRefGoogle Scholar
  20. 20.
    Madelung O. Semiconductors: Data Handbook. New York: Springer Science & Business Media, 2012Google Scholar
  21. 21.
    Engel M, Kunze F, Lupascu D C, Benson N, Schmechel R. Reduced exciton binding energy in organic semiconductors: tailoring the Coulomb interaction. Physica Status Solidi (RRL)-Rapid Research Letters, 2012, 6(2): 68–70CrossRefGoogle Scholar
  22. 22.
    Pavlica E, Bratina G. Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes. Applied Physics Letters, 2012, 101(9): 093304CrossRefGoogle Scholar
  23. 23.
    Haynes J R, Shockley W. The mobility and life of injected holes and electrons in Germanium. Physical Review, 1951, 81(5): 835–843CrossRefGoogle Scholar
  24. 24.
    Supplemental Material at for the detailed derivation of Eq. (3) and Hall mobility formula, biased IQE, PDS and SCLC, CV measurements, and the inter-atom distances in Sb2Se3 Google Scholar
  25. 25.
    Yang Y, Rodríguez-Córdoba W, Lian T. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions. Journal of the American Chemical Society, 2011, 133(24): 9246–9249CrossRefGoogle Scholar
  26. 26.
    Yang Y, Ostrowski D P, France R M, Zhu K, van de Lagemaat J, Luther J M, Beard M C. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photonics, 2016, 10(1): 53–59CrossRefGoogle Scholar
  27. 27.
    Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L. Exciton dynamics in suspended monolayer and fewlayer MoS2 2D crystals. ACS Nano, 2013, 7(2): 1072–1080CrossRefGoogle Scholar
  28. 28.
    Gokmen T, Gunawan O, Mitzi D B. Minority carrier diffusion length extraction in Cu2ZnSn(Se, S)4 solar cells. Journal of Applied Physics, 2013, 114(11): 114511CrossRefGoogle Scholar
  29. 29.
    Liu X X, Sites J R. Solar-cell collection efficiency and its variation with voltage. Journal of Applied Physics, 1994, 75(1): 577–581CrossRefGoogle Scholar
  30. 30.
    Seto J Y W. The electrical properties of polycrystalline silicon films. Journal of Applied Physics, 1975, 46(12): 5247–5254CrossRefGoogle Scholar
  31. 31.
    Liu X, Xiao X, Yang Y, Xue D J, Li D, Chen C, Lu S, Gao L, He Y, C B M, Wang G, Chen S, Tang J. Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Submitted to Progress in Photovoltaics: Research and ApplicationsGoogle Scholar
  32. 32.
    Mott N F, Davis E A. Electronic Processes in Non-Crystalline Materials. Oxford: Oxford University Press, 2012Google Scholar
  33. 33.
    Guo B L, Chen Y H, Liu X J, Liu W C, Li A D. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells. AIP Advances, 2014, 4(9): 097115CrossRefGoogle Scholar
  34. 34.
    Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411–4420CrossRefGoogle Scholar
  35. 35.
    Bube R H. Trap density determination by space-charge-limited currents. Journal of Applied Physics, 1962, 33(5): 1733–1737CrossRefGoogle Scholar
  36. 36.
    Ritter D, Weiser K. Suppression of interference fringes in absorption measurements on thin films. Optics Communications, 1986, 57(5): 336–338CrossRefGoogle Scholar
  37. 37.
    Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 1953, 92 (5): 1324CrossRefGoogle Scholar
  38. 38.
    Tumelero M A, Faccio R, Pasa A A. Unraveling the native conduction of trichalcogenides and it ideal band alignment for new photovoltaic interfaces. The Journal of Physical Chemistry C, 2016, 120(3): 1390–1399CrossRefGoogle Scholar
  39. 39.
    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344CrossRefGoogle Scholar
  40. 40.
    Burst J M, Duenow J N, Albin D S, Colegrove E, Reese M O, Aguiar J A, Jiang C S, Patel M K, Al-Jassim M M, Kuciauskas D. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nature Energy, 2016, 1: 16015CrossRefGoogle Scholar
  41. 41.
    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn (S, Se)4 solar cells. Advanced Energy Materials, 2013, 3 (1): 34–38CrossRefGoogle Scholar
  42. 42.
    Repins I, Contreras M, Romero M, Yan Y, Metzger W, Li J, Johnston S, Egaas B, DeHart C, Scharf J, McCandless B E, Noufi R. Characterization of 19.9%-efficient CIGS absorbers. In: Proceedings of 33rd IEEE Photovoltaic Specialists Conference, 2008, 1–6Google Scholar
  43. 43.
    Jaramillo R, Sher M J, Ofori-Okai B K, Steinmann V, Yang C, Hartman K, Nelson K A, Lindenberg A M, Gordon R G, Buonassisi T. Transient terahertz photoconductivity measurements of minoritycarrier lifetime in tin sulfide thin films: advanced metrology for an early stage photovoltaic material. Journal of Applied Physics, 2016, 119(3): 035101CrossRefGoogle Scholar
  44. 44.
    Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou K W, Fischer A, Amassian A, Asbury J B, Sargent E H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials, 2011, 10(10): 765–771CrossRefGoogle Scholar
  45. 45.
    Saparov B, Sun J P, Meng W, Xiao Z, Duan H S, Gunawan O, Shin D, Hill I G, Yan Y, Mitzi D B. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chemistry of Materials, 2016, 28(7): 2315–2322CrossRefGoogle Scholar
  46. 46.
    Tai K F, Gunawan O, Kuwahara M, Chen S, Mhaisalkar S G, Huan C H A, Mitzi D B. Fill factor losses in Cu2ZnSn (SxSe1–x)4 solar cells: insights from physical and electrical characterization of devices and exfoliated films. Advanced Energy Materials, 2016, 6 (3): 1501609CrossRefGoogle Scholar
  47. 47.
    Song H, Zhan X, Li D, Zhou Y, Yang B, Zeng K, Zhong J, Miao X, Tang J. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics. Solar Energy Materials and Solar Cells, 2016, 146: 1–7CrossRefGoogle Scholar
  48. 48.
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths> 175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970CrossRefGoogle Scholar
  49. 49.
    Ramakrishna Reddy K T, Koteswara Reddy N, Miles R W. Photovoltaic properties of SnS based solar cells. Solar Energy Materials and Solar Cells, 2006, 90(18–19): 3041–3046CrossRefGoogle Scholar
  50. 50.
    Kim G H, García de Arquer F P, Yoon Y J, Lan X, Liu M, Voznyy O, Jagadamma L K, Abbas A S, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y, Sargent E H. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Letters, 2015, 15(11): 7691–7696CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Chao Chen
    • 1
  • David C. Bobela
    • 2
  • Ye Yang
    • 2
  • Shuaicheng Lu
    • 1
  • Kai Zeng
    • 1
  • Cong Ge
    • 1
  • Bo Yang
    • 1
  • Liang Gao
    • 1
  • Yang Zhao
    • 1
  • Matthew C. Beard
    • 2
  • Jiang Tang
    • 1
  1. 1.Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and TechnologyWuhanChina
  2. 2.Chemistry and Nanoscience CenterNational Renewable Energy LaboratoryGoldenUSA

Personalised recommendations